Paolo Colombo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1439819/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Polymerâ€Derived Ceramics: 40 Years of Research and Innovation in Advanced Ceramics. Journal of the American Ceramic Society, 2010, 93, 1805-1837.	3.8	752
2	Additive Manufacturing of Ceramics: Issues, Potentialities, and Opportunities. Journal of the American Ceramic Society, 2015, 98, 1983-2001.	3.8	726
3	Conventional and novel processing methods for cellular ceramics. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2006, 364, 109-124.	3.4	384
4	Stereolithography of SiOC Ceramic Microcomponents. Advanced Materials, 2016, 28, 370-376.	21.0	320
5	Processing, properties and applications of highly porous geopolymers: A review. Ceramics International, 2018, 44, 16103-16118.	4.8	279
6	Inertization and reuse of waste materials by vitrification and fabrication of glass-based products. Current Opinion in Solid State and Materials Science, 2003, 7, 225-239.	11.5	224
7	Chemical Durability of Silicon Oxycarbide Glasses. Journal of the American Ceramic Society, 2002, 85, 1529-1536.	3.8	214
8	Engineering porosity in polymer-derived ceramics. Journal of the European Ceramic Society, 2008, 28, 1389-1395.	5.7	204
9	Additive Manufacturing of Optically Transparent Glass. 3D Printing and Additive Manufacturing, 2015, 2, 92-105.	2.9	199
10	Fabrication of ceramic components with hierarchical porosity. Journal of Materials Science, 2010, 45, 5425-5455.	3.7	194
11	Macro- and micro-cellular porous ceramics from preceramic polymers. Composites Science and Technology, 2003, 63, 2353-2359.	7.8	170
12	Porous polymer derived ceramics. Materials Science and Engineering Reports, 2016, 106, 1-30.	31.8	167
13	Ceramic foams from preceramic polymers. Materials Research Innovations, 2002, 6, 260-272.	2.3	160
14	Characterization of the morphology of cellular ceramics by 3D image processing of X-ray tomography. Journal of the European Ceramic Society, 2007, 27, 1973-1981.	5.7	155
15	Silicon Oxycarbide Ceramic Foams from a Preceramic Polymer. Journal of the American Ceramic Society, 1999, 82, 573-578.	3.8	150
16	Microâ€IMacroporous Ceramics from Preceramic Precursors. Journal of the American Ceramic Society, 2001, 84, 2252-2255.	3.8	147
17	Novel Microcellular Ceramics from a Silicone Resin. Journal of the American Ceramic Society, 2004, 87, 152-154.	3.8	137
18	Digital light processing of ceramic components from polysiloxanes. Journal of the European Ceramic Society, 2018, 38, 57-66.	5.7	135

#	Article	IF	CITATIONS
19	In Praise of Pores. Science, 2008, 322, 381-383.	12.6	132
20	Advanced Ceramics from Preceramic Polymers Modified at the Nano-Scale: A Review. Materials, 2014, 7, 1927-1956.	2.9	131
21	Mechanical Properties of Silicon Oxycarbide Ceramic Foams. Journal of the American Ceramic Society, 2001, 84, 2245-2251.	3.8	128
22	Additive Manufacturing of ceramic components by Digital Light Processing: A comparison between the "bottom-up―and the "top-down―approaches. Journal of the European Ceramic Society, 2019, 39, 2140-2148.	5.7	127
23	Synthesis of Silicon Carbide Thin Films with Polycarbosilane (PCS). Journal of the American Ceramic Society, 1997, 80, 2333-2340.	3.8	125
24	Cellular Ceramics: Intriguing Structures, Novel Properties, and Innovative Applications. MRS Bulletin, 2003, 28, 296-300.	3.5	124
25	Geopolymer foams by gelcasting. Ceramics International, 2014, 40, 5723-5730.	4.8	124
26	Porosity, mechanical and insulating properties of geopolymer foams using vegetable oil as the stabilizing agent. Journal of the European Ceramic Society, 2018, 38, 799-805.	5.7	120
27	Direct ink writing of geopolymeric inks. Journal of the European Ceramic Society, 2017, 37, 2481-2489.	5.7	119
28	High-porosity geopolymer membrane supports by peroxide route with the addition of egg white as surfactant. Ceramics International, 2017, 43, 2267-2273.	4.8	115
29	Generation of multilayered structures for biomedical applications using a novel tri-needle coaxial device and electrohydrodynamic flow. Journal of the Royal Society Interface, 2008, 5, 1255-1261.	3.4	109
30	High strength metakaolin-based geopolymer foams with variable macroporous structure. Journal of the European Ceramic Society, 2016, 36, 4243-4249.	5.7	107
31	Porous geopolymer composites: A review. Composites Part A: Applied Science and Manufacturing, 2021, 150, 106629.	7.6	106
32	High-porosity geopolymer foams with tailored porosity for thermal insulation and wastewater treatment. Journal of Materials Research, 2017, 32, 3251-3259.	2.6	105
33	Direct Ink Writing of micrometric SiOC ceramic structures using a preceramic polymer. Journal of the European Ceramic Society, 2016, 36, 1589-1594.	5.7	104
34	Growth of Oneâ€Ðimensional Nanostructures in Porous Polymerâ€Derived Ceramics by Catalystâ€Assisted Pyrolysis. Part I: Iron Catalyst. Journal of the American Ceramic Society, 2010, 93, 959-968.	3.8	102
35	Silicon carbide-based foams from direct blowing of polycarbosilane. Journal of the European Ceramic Society, 2012, 32, 503-510.	5.7	101
36	Improving the properties of ceramic foams by a vacuum infiltration process. Journal of the European Ceramic Society, 2010, 30, 3005-3011.	5.7	98

#	Article	IF	CITATIONS
37	Direct ink writing of ceramic matrix composite structures. Journal of the American Ceramic Society, 2017, 100, 4397-4401.	3.8	98
38	Vitrification of industrial and natural wastes with production of glass fibres. Journal of the European Ceramic Society, 2000, 20, 2485-2490.	5.7	94
39	Enhanced hydrogen and methane gas storage of silicon oxycarbide derived carbon. Microporous and Mesoporous Materials, 2011, 144, 105-112.	4.4	94
40	Joining of SiC/SiCf ceramic matrix composites for fusion reactor blanket applications. Journal of Nuclear Materials, 2000, 278, 127-135.	2.7	91
41	Conductive Ceramic Foams from Preceramic Polymers. Journal of the American Ceramic Society, 2001, 84, 2265-2268.	3.8	90
42	Carbide-derived-carbons with hierarchical porosity from a preceramic polymer. Carbon, 2010, 48, 201-210.	10.3	89
43	Highly porous macro- and micro-cellular ceramics from a polysilazane precursor. Ceramics International, 2009, 35, 3281-3290.	4.8	88
44	Additive manufacturing of polymer-derived ceramics: Materials, technologies, properties and potential applications. Progress in Materials Science, 2022, 128, 100969.	32.8	84
45	Multifunctional advanced ceramics from preceramic polymers and nano-sized active fillers. Journal of the European Ceramic Society, 2013, 33, 453-469.	5.7	81
46	Waste-to-resource preparation of glass-containing foams from geopolymers. Ceramics International, 2019, 45, 7196-7202.	4.8	81
47	SiOC ceramics with ordered porosity by 3D-printing of a preceramic polymer. Journal of Materials Research, 2013, 28, 2243-2252.	2.6	80
48	Silicon oxycarbide glasses for blood-contact applications. Acta Biomaterialia, 2005, 1, 583-589.	8.3	79
49	Direct Ink Writing of a Preceramic Polymer and Fillers to Produce Hardystonite (Ca ₂ ZnSi ₂ O ₇) Bioceramic Scaffolds. Journal of the American Ceramic Society, 2016, 99, 1960-1967.	3.8	79
50	Open cell geopolymer foams by a novel saponification/peroxide/gelcasting combined route. Journal of the European Ceramic Society, 2014, 34, 3133-3137.	5.7	77
51	Compositional and Microstructural Characterization of RuO2 â€â€‰TiO2 Catalysts Synthesized by the Solâ€Gel Method. Journal of the Electrochemical Society, 1992, 139, 1655-1661.	2.9	76
52	Foaming of flat glass cullet using Si3N4 and MnO2 powders. Ceramics International, 2009, 35, 1953-1959.	4.8	76
53	Comparison of Microwave Hybrid and Conventional Heating of Preceramic Polymers to Form Silicon Carbide and Silicon Oxycarbide Ceramics. Journal of the American Ceramic Society, 2000, 83, 1617-1625.	3.8	72
54	3D Nanofabrication of SiOC Ceramic Structures. Advanced Science, 2018, 5, 1800937.	11.2	72

#	Article	IF	CITATIONS
55	Coating of metals by the sol-gel dip-coating method. Journal of the European Ceramic Society, 1992, 10, 431-436.	5.7	71
56	Giant piezoresistivity of polymer-derived ceramics at high temperatures. Journal of the European Ceramic Society, 2010, 30, 2203-2207.	5.7	70
57	Stresses Occurring during Joining of Ceramics Using Preceramic Polymers. Journal of the American Ceramic Society, 2001, 84, 2240-2244.	3.8	63
58	Borosilicate glass matrix composites containing multi-wall carbon nanotubes. Journal of the European Ceramic Society, 2005, 25, 1515-1523.	5.7	63
59	Growth of Oneâ€Dimensional Nanostructures in Porous Polymerâ€Derived Ceramics by Catalystâ€Assisted Pyrolysis. Part II: Cobalt Catalyst. Journal of the American Ceramic Society, 2010, 93, 3709-3719.	3.8	62
60	Ceramic microparticles and capsules via microfluidic processing of a preceramic polymer. Journal of the Royal Society Interface, 2010, 7, S461-73.	3.4	62
61	Additive manufacturing of ceramic materials for energy applications: Road map and opportunities. Journal of the European Ceramic Society, 2022, 42, 3049-3088.	5.7	62
62	Polymerâ€derived SiCN cellular structures from replica of 3D printed lattices. Journal of the American Ceramic Society, 2018, 101, 2732-2738.	3.8	60
63	Direct ink writing of wollastonite-diopside glass-ceramic scaffolds from a silicone resin and engineered fillers. Journal of the European Ceramic Society, 2017, 37, 4187-4195.	5.7	59
64	Complex mullite structures fabricated via digital light processing of a preceramic polysiloxane with active alumina fillers. Journal of the European Ceramic Society, 2019, 39, 1336-1343.	5.7	59
65	Ceramic Foams: Fabrication, Properties and Applications. Key Engineering Materials, 2002, 206-213, 1913-1918.	0.4	58
66	LAS glass–ceramic scaffolds by three-dimensional printing. Journal of the European Ceramic Society, 2013, 33, 1525-1533.	5.7	57
67	Digital light processing of wollastonite-diopside glass-ceramic complex structures. Journal of the European Ceramic Society, 2018, 38, 4580-4584.	5.7	57
68	Gas Permeability of Microcellular Ceramic Foams. Industrial & Engineering Chemistry Research, 2007, 46, 3366-3372.	3.7	55
69	Ceramic foams and micro-beads from emulsions of a preceramic polymer. Journal of the European Ceramic Society, 2011, 31, 1481-1490.	5.7	54
70	Sintered and glazed glass-ceramics from natural and waste raw materials. Ceramics International, 2014, 40, 3543-3551.	4.8	54
71	Comparison of Ion Irradiation Effects in Siliconâ€Based Preceramic Thin Films. Journal of the American Ceramic Society, 2000, 83, 713-720.	3.8	53
72	Development of lightweight porcelain stoneware tiles using foaming agents. Journal of the European Ceramic Society, 2012, 32, 745-752.	5.7	53

#	Article	IF	CITATIONS
73	Title is missing!. Journal of Sol-Gel Science and Technology, 1998, 13, 195-199.	2.4	51
74	Effect of process parameters on the physical properties of porous geopolymers obtained by gelcasting. Ceramics International, 2014, 40, 13585-13590.	4.8	51
75	Polymer-derived microcellular SiOC foams with magnetic functionality. Journal of Materials Science, 2008, 43, 4119-4126.	3.7	50
76	Highly porous metals and ceramics. Materials Science and Technology, 2010, 26, 1145-1158.	1.6	50
77	Bioactive Glass and Silicate-Based Ceramic Coatings on Metallic Implants: Open Challenge or Outdated Topic?. Materials, 2019, 12, 2929.	2.9	50
78	Direct ink writing of porous titanium (Ti6Al4V) lattice structures. Materials Science and Engineering C, 2019, 103, 109794.	7.3	50
79	Enhanced electromagnetic microwave absorption of SiOC ceramics targeting the integration of structure and function. Journal of the European Ceramic Society, 2021, 41, 6393-6405.	5.7	50
80	Preparation, properties and applications of fly ash-based porous geopolymers: A review. Journal of Cleaner Production, 2022, 359, 132043.	9.3	50
81	Novel Mullite Synthesis Based on Alumina Nanoparticles and a Preceramic Polymer. Journal of the American Ceramic Society, 2006, 89, 1577-1583.	3.8	49
82	Low-temperature fabrication of SiC/geopolymer cellular composites. Composites Part B: Engineering, 2018, 137, 23-30.	12.0	49
83	Fused deposition modeling of mullite structures from a preceramic polymer and γ-alumina. Journal of the European Ceramic Society, 2019, 39, 2463-2471.	5.7	49
84	Ag- or Cu-modified geopolymer filters for water treatment manufactured by 3D printing, direct foaming, or granulation. Scientific Reports, 2020, 10, 7233.	3.3	49
85	Geopolymer foams obtained by the saponification/peroxide/gelcasting combined route using different soap foam precursors. Journal of the American Ceramic Society, 2017, 100, 3440-3450.	3.8	48
86	A Direct Method for the Fabrication of Macroâ€Porous SiOC Ceramics from Preceramic Polymers. Advanced Engineering Materials, 2008, 10, 256-259.	3.5	47
87	Silicon Oxycarbide Foams from a Silicone Preceramic Polymer and Polyurethane. Journal of Sol-Gel Science and Technology, 1999, 14, 103-111.	2.4	46
88	Silicon carbide-based materials for joining silicon carbide composites for fusion energy applications. Journal of Nuclear Materials, 2002, 307-311, 1232-1236.	2.7	45
89	Kinetic Studies of Mullite Synthesis from Alumina Nanoparticles and a Preceramic Polymer. Journal of the American Ceramic Society, 2008, 91, 2529-2533.	3.8	45
90	Oxidation resistant ceramic foam from a silicone preceramic polymer/polyurethane blend. Journal of the European Ceramic Society, 2001, 21, 2821-2828.	5.7	44

#	Article	IF	CITATIONS
91	Electrospun SiOC ceramic fiber mats as freestanding electrodes for electrochemical energy storage applications. Ceramics International, 2020, 46, 3565-3573.	4.8	44
92	Open-cell phosphate-based geopolymer foams by frothing. Materials Letters, 2017, 188, 379-382.	2.6	43
93	Optimization and Characterization of Preceramic Inks for Direct Ink Writing of Ceramic Matrix Composite Structures. Materials, 2018, 11, 515.	2.9	43
94	SiOC Ceramic Foams through Melt Foaming of a Methylsilicone Preceramic Polymer. Journal of Porous Materials, 2003, 10, 113-121.	2.6	42
95	Thermal Shock Behavior of Silicon Oxycarbide Foams. Journal of the American Ceramic Society, 2002, 85, 2306-2312.	3.8	40
96	Novel glass-ceramic SOFC sealants from glass powders and a reactive silicone binder. Journal of the European Ceramic Society, 2018, 38, 4245-4251.	5.7	40
97	Removal of ammonium from wastewater with geopolymer sorbents fabricated via additive manufacturing. Materials and Design, 2020, 195, 109006.	7.0	40
98	Hierarchical Porosity Components by Infiltration of a Ceramic Foam. Journal of the American Ceramic Society, 2007, 90, 2172-2177.	3.8	39
99	Electrohydrodynamic forming of porous ceramic capsules from a preceramic polymer. Materials Letters, 2009, 63, 483-485.	2.6	38
100	SiAlON ceramics from preceramic polymers and nano-sized fillers: Application in ceramic joining. Journal of the European Ceramic Society, 2012, 32, 1329-1335.	5.7	38
101	In vitro and in vivo study of naturally derived alginate/hydroxyapatite bio composite scaffolds. International Journal of Biological Macromolecules, 2020, 165, 1346-1360.	7.5	38
102	Structure and composition of interlayers in joints between SiC bodies. Journal of the European Ceramic Society, 1997, 17, 1259-1265.	5.7	36
103	Bioactive Wollastonite-Diopside Foams from Preceramic Polymers and Reactive Oxide Fillers. Materials, 2015, 8, 2480-2494.	2.9	36
104	Lattice-shaped geopolymer catalyst for biodiesel synthesis fabricated by additive manufacturing. Ceramics International, 2019, 45, 1443-1446.	4.8	36
105	Engineering a material for biomedical applications with electric field assisted processing. Applied Physics A: Materials Science and Processing, 2009, 97, 31-37.	2.3	35
106	Advanced ceramics from a preceramic polymer and nano-fillers. Journal of the European Ceramic Society, 2009, 29, 843-849.	5.7	35
107	Development of multi-walled carbon nanotubes-based coatings on carbon-bonded alumina filters for steel melt filtration. Journal of the European Ceramic Society, 2015, 35, 1569-1580.	5.7	35
108	Development of bioactive silicate-based glass-ceramics from preceramic polymer and fillers. Journal of the European Ceramic Society, 2015, 35, 731-739.	5.7	35

#	Article	IF	CITATIONS
109	Bioactive Glass-Ceramic Scaffolds from Novel â€~Inorganic Gel Casting' and Sinter-Crystallization. Materials, 2017, 10, 171.	2.9	35
110	Sol–gel synthesis and characterization of Ag2S nanocrystallites in silica thin film glasses. Journal of Materials Chemistry, 1999, 9, 2893-2898.	6.7	34
111	Silicon Carbide Films by Laser Pyrolysis of Polycarbosilane. Journal of the American Ceramic Society, 2001, 84, 224-226.	3.8	34
112	Novel akermanite-based bioceramics from preceramic polymers and oxide fillers. Ceramics International, 2014, 40, 1029-1035.	4.8	34
113	Hierarchical Porous Carbideâ€Derived Carbons for the Removal of Cytokines from Blood Plasma. Advanced Healthcare Materials, 2012, 1, 796-800.	7.6	33
114	Porous wollastonite–hydroxyapatite bioceramics from a preceramic polymer and micro- or nano-sized fillers. Journal of the European Ceramic Society, 2012, 32, 399-408.	5.7	33
115	Hierarchically structured polymer-derived ceramic fibers by electrospinning and catalyst-assisted pyrolysis. Journal of the European Ceramic Society, 2014, 34, 549-554.	5.7	33
116	Highly porous mullite ceramics from engineered alkali activated suspensions. Journal of the American Ceramic Society, 2018, 101, 1036-1041.	3.8	33
117	Ion Beam Induced Conversion of Si-Based Polymers and Gels Layers into Ceramics Coatings. Journal of Sol-Gel Science and Technology, 2003, 26, 251-255.	2.4	32
118	Preparation of Polymeric and Ceramic Porous Capsules by a Novel Electrohydrodynamic Process. Pharmaceutical Development and Technology, 2008, 13, 425-432.	2.4	32
119	Class–ceramics and composites containing aluminum borate whiskers. Ceramics International, 2010, 36, 1589-1596.	4.8	32
120	Biosilicate [®] scaffolds produced by 3Dâ€printing and direct foaming using preceramic polymers. Journal of the American Ceramic Society, 2019, 102, 1010-1020.	3.8	32
121	3D printing of polymer-derived SiOC with hierarchical and tunable porosity. Additive Manufacturing, 2020, 36, 101549.	3.0	32
122	Effects of surfactants/stabilizing agents on the microstructure and properties of porous geopolymers by direct foaming. Journal of Asian Ceramic Societies, 2021, 9, 412-423.	2.3	32
123	Ceramic Microtubes from Preceramic Polymers. Journal of the American Ceramic Society, 2003, 86, 1025-1027.	3.8	31
124	Finite element analysis of reticulated ceramics under compression. Acta Materialia, 2012, 60, 6692-6702.	7.9	31
125	Open-celled silicon carbide foams with high porosity from boron-modified polycarbosilanes. Journal of the European Ceramic Society, 2019, 39, 5114-5122.	5.7	31
126	Developing uranium dicarbide–graphite porous materials for the SPES project. Journal of Nuclear Materials, 2010, 404, 68-76.	2.7	30

#	Article	IF	CITATIONS
127	Novel 3D Wollastoniteâ€Based Scaffolds from Preceramic Polymers Containing Micro―and Nanoâ€&ized Reactive Particles. Advanced Engineering Materials, 2012, 14, 269-274.	3.5	30
128	Preceramic polymerâ€derived SiOC fibers by electrospinning. Journal of Applied Polymer Science, 2014, 131, .	2.6	30
129	Hardystonite bioceramics from preceramic polymers. Journal of the European Ceramic Society, 2016, 36, 829-835.	5.7	30
130	Ion Irradiation of Preceramic Polymer Thin Films. Journal of the American Ceramic Society, 1996, 79, 1967-1970.	3.8	29
131	SiAlON-Based Ceramics from Filled Preceramic Polymers. Journal of the American Ceramic Society, 2006, 89, 3839-3842.	3.8	29
132	Novel Preparation, Microstructure, and Properties of Polyacrylonitrile-Based Carbon Nanofiber–Graphene Nanoplatelet Materials. ACS Omega, 2016, 1, 202-211.	3.5	28
133	Direct ink writing of three dimensional Ti2AlC porous structures. Additive Manufacturing, 2019, 28, 365-372.	3.0	28
134	The influence of sintering procedure and porosity on the properties of 3D printed alumina ceramic cores. Ceramics International, 2021, 47, 27668-27676.	4.8	28
135	Facile synthesis of porous geopolymers via the addition of a water-soluble pore forming agent. Ceramics International, 2022, 48, 2853-2864.	4.8	27
136	Novel co-axial electrohydrodynamic <i>in-situ</i> preparation of liquid-filled polymer-shell microspheres for biomedical applications. Journal of Microencapsulation, 2008, 25, 241-247.	2.8	26
137	Development of multiphase bioceramics from a filler-containing preceramic polymer. Ceramics International, 2009, 35, 1415-1421.	4.8	26
138	Evaluation of direct light processing for the fabrication of bioactive ceramic scaffolds: Effect of pore/strut size on manufacturability and mechanical performance. Journal of the European Ceramic Society, 2021, 41, 892-900.	5.7	26
139	Inertization of hazardous dredging spoils. Waste Management, 2002, 22, 865-869.	7.4	25
140	Lightweight Porcelain Stoneware by Engineered CeO ₂ Addition. Advanced Engineering Materials, 2010, 12, 65-70.	3.5	25
141	Cordierite ceramics from silicone resins containing nano-sized oxide particle fillers. Ceramics International, 2013, 39, 8893-8899.	4.8	25
142	Characterization of porosity, structure, and mechanical properties of electrospun SiOC fiber mats. Journal of Materials Science, 2015, 50, 4221-4231.	3.7	25
143	Porous, Sintered Glassâ€Ceramics from Inorganic Polymers Based on Fayalite Slag. Journal of the American Ceramic Society, 2016, 99, 1985-1991.	3.8	25
144	Microstructure, thermal conductivity and simulation of elastic modulus of MAX-phase (Ti2AlC) gel-cast foams. Journal of the European Ceramic Society, 2018, 38, 3424-3432.	5.7	25

#	Article	IF	CITATIONS
145	Additive manufacturing of silicon carbide by selective laser sintering of PA12 powders and polymer infiltration and pyrolysis. Journal of the European Ceramic Society, 2021, 41, 5056-5065.	5.7	25
146	Polysiloxaneâ€Đerived Ceramics Containing Nanowires with Catalytically Active Tips. Journal of the American Ceramic Society, 2014, 97, 959-966.	3.8	24
147	Facile one-pot formation of ceramic fibres from preceramic polymers by pressurised gyration. Ceramics International, 2015, 41, 6067-6073.	4.8	24
148	High-efficiency aerosol filters based on silicon carbide foams coated with ceramic nanowires. Separation and Purification Technology, 2015, 152, 180-191.	7.9	24
149	Hierarchically porous 3D-printed akermanite scaffolds from silicones and engineered fillers. Journal of the European Ceramic Society, 2019, 39, 4445-4449.	5.7	24
150	3D printed geopolymer: An efficient support for immobilization of Candida rugosa lipase. Chemical Engineering Journal, 2021, 414, 128843.	12.7	24
151	Decoration of Ceramic Foams by Ceramic Nanowires via Catalystâ€Assisted Pyrolysis of Preceramic Polymers. Journal of the American Ceramic Society, 2012, 95, 3071-3077.	3.8	23
152	Effect of MgO sintering additive on mullite structures manufactured by fused deposition modeling (FDM) technology. Journal of the European Ceramic Society, 2021, 41, 6677-6686.	5.7	23
153	Preparation of nasal cavity-like SiC–Si3N4 foams with a hierarchical pore architecture. RSC Advances, 2015, 5, 27891-27900.	3.6	22
154	Engineering of silicone-based mixtures for the digital light processing of Ã…kermanite scaffolds. Journal of the European Ceramic Society, 2020, 40, 2566-2572.	5.7	22
155	A Novel Process for the Manufacture of Ceramic Microelectrodes for Biomedical Applications. International Journal of Applied Ceramic Technology, 2008, 5, 37-43.	2.1	21
156	Production of high-intensity RIB at SPES. Nuclear Physics A, 2010, 834, 754c-757c.	1.5	21
157	In situ spinel formation in Al2O3–MgO–C filter materials for steel melt filtration. Ceramics International, 2014, 40, 13507-13513.	4.8	21
158	Silicon nitride foams from emulsions sintered by rapid intense thermal radiation. Journal of the European Ceramic Society, 2015, 35, 3263-3272.	5.7	21
159	Polymer-derived sphene biocoating on cp-Ti substrates for orthopedic and dental implants. Surface and Coatings Technology, 2016, 301, 140-147.	4.8	21
160	Bioactive Sphene-Based Ceramic Coatings on cpTi Substrates for Dental Implants: An In Vitro Study. Materials, 2018, 11, 2234.	2.9	21
161	Fabrication and characterization of hardystonite-chitosan biocomposite scaffolds. Ceramics International, 2019, 45, 8804-8814.	4.8	21
162	Fluence and current density dependence of silver nanocluster dimensions in ion-implanted fused silver silica. Journal of Materials Chemistry, 1998, 8, 457-461.	6.7	20

#	Article	IF	CITATIONS
163	Effect of Hypervelocity Impact on Microcellular Ceramic Foams from a Preceramic Polymer. Advanced Engineering Materials, 2003, 5, 802-805.	3.5	20
164	Ceramic foam-reinforced Al-based micro-composites. Composites Science and Technology, 2008, 68, 3202-3207.	7.8	20
165	The In Vitro Bioactivity, Degradation, and Cytotoxicity of Polymer-Derived Wollastonite-Diopside Glass-Ceramics. Materials, 2017, 10, 425.	2.9	20
166	Bioactive glass-ceramic scaffolds by additive manufacturing and sinter-crystallization of fine glass powders. Journal of Materials Research, 2018, 33, 1960-1971.	2.6	20
167	Biodiesel Processing Using Sodium and Potassium Geopolymer Powders as Heterogeneous Catalysts. Molecules, 2020, 25, 2839.	3.8	20
168	Suitability of Biosilicate® glass-ceramic powder for additive manufacturing of highly porous scaffolds. Ceramics International, 2021, 47, 8200-8207.	4.8	20
169	Selected Emerging Opportunities for Ceramics in Energy, Environment, and Transportation. International Journal of Applied Ceramic Technology, 2013, 10, 731-739.	2.1	19
170	Microstructure Development and Dielectric Characterization of Forsteriteâ€Based Ceramics from Silicone Resins and Oxide Fillers. Advanced Engineering Materials, 2014, 16, 806-813.	3.5	19
171	Short-time performance of MWCNTs-coated Al 2 O 3 -C filters in a steel melt. Journal of the European Ceramic Society, 2016, 36, 857-866.	5.7	19
172	B-doped hardystonite bioceramics from preceramic polymers and fillers: Synthesis and application to foams and 3D-printed scaffolds. Journal of the European Ceramic Society, 2017, 37, 1757-1767.	5.7	19
173	Geopolymer beads and 3D printed lattices containing activated carbon and hydrotalcite for anionic dye removal. Catalysis Today, 2022, 390-391, 57-68.	4.4	19
174	Ceramic microspheres with controlled porosity by emulsion-ice templating. Journal of the European Ceramic Society, 2017, 37, 2559-2568.	5.7	18
175	Glass powders and reactive silicone binder: Interactions and application to additive manufacturing of bioactive glass-ceramic scaffolds. Ceramics International, 2019, 45, 13740-13746.	4.8	18
176	Comparative Analysis of Wollastoniteâ€Diopside Glassâ€Ceramic Structures Fabricated via Stereoâ€Lithography. Advanced Engineering Materials, 2019, 21, 1801160.	3.5	18
177	Highly Porous Sr/Mgâ€Doped Hardystonite Bioceramics from Preceramic Polymers and Reactive Fillers: Direct Foaming and Direct Ink Writing. Advanced Engineering Materials, 2019, 21, 1800900.	3.5	18
178	Lanthanum carbide-based porous materials from carburization of lanthanum oxide and lanthanum oxalate mixtures. Journal of Nuclear Materials, 2008, 378, 180-187.	2.7	17
179	Fabrication of mesoporous and high specific surface area lanthanum carbide–carbon nanotube composites. Journal of Nuclear Materials, 2009, 385, 582-590.	2.7	17
180	Novel synthesis and applications of yttrium silicates from a silicone resin containing oxide nano-particle fillers. Ceramics International, 2012, 38, 5469-5474.	4.8	17

#	Article	IF	CITATIONS
181	Rapid sintering of silicon nitride foams decorated with one-dimensional nanostructures by intense thermal radiation. Science and Technology of Advanced Materials, 2014, 15, 045003.	6.1	17
182	Direct ink writing of silica-carbon-calcite composite scaffolds from a silicone resin and fillers. Journal of the European Ceramic Society, 2018, 38, 5200-5207.	5.7	17
183	Bioactive Glass-Ceramic Foam Scaffolds from â€~Inorganic Gel Casting' and Sinter-Crystallization. Materials, 2018, 11, 349.	2.9	17
184	Influence of the thermal treatment on the characteristics of porous geopolymers as potential biomaterials. Materials Science and Engineering C, 2020, 116, 111171.	7.3	17
185	Synthesis of a Niâ€Containing Porous SiOC Material From Polyphenylmethylsiloxane by a Direct Foaming Technique. Advanced Engineering Materials, 2012, 14, 1116-1122.	3.5	16
186	Influence of the loading direction on the mechanical behavior of ceramic foams and lattices under compression. Acta Materialia, 2013, 61, 5525-5534.	7.9	16
187	Multiscale ceramic components from preceramic polymers by hybridization of vat polymerization-based technologies. Additive Manufacturing, 2019, 30, 100913.	3.0	16
188	Complex SiOC ceramics from 2D structures by 3D printing and origami. Additive Manufacturing, 2020, 33, 101144.	3.0	16
189	Metakaolin-based geopolymer coatings on metals by airbrush spray deposition. Journal of Coatings Technology Research, 2020, 17, 991-1002.	2.5	16
190	Fabrication and properties of slag-based geopolymer syntactic foams containing hollow glass microspheres. Materials Letters, 2022, 308, 131158.	2.6	16
191	SiOC glass modified by montmorillonite clay. Ceramics International, 2006, 32, 679-686.	4.8	15
192	Low temperature synthesis of zircon from silicone resins and oxide nano-sized particles. Journal of the European Ceramic Society, 2012, 32, 2819-2824.	5.7	15
193	Selective laser densification of lithium aluminosilicate glass ceramic tapes. Applied Surface Science, 2013, 265, 610-614.	6.1	15
194	Novel processing of bioglass ceramics from silicone resins containing micro―and nanoâ€sized oxide particle fillers. Journal of Biomedical Materials Research - Part A, 2014, 102, 2502-2510.	4.0	15
195	Additive manufacturing of SiOC scaffolds with tunable structure-performance relationship. Journal of the European Ceramic Society, 2021, 41, 7552-7559.	5.7	15
196	Mullite/Zirconia Nanocomposites from a Preceramic Polymer and Nanosized Fillers. Journal of the American Ceramic Society, 2011, 94, 1357-1362.	3.8	14
197	In situ carbon thermal reduction method for the production of electrospun metal/SiOC composite fibers. Journal of Materials Science, 2015, 50, 2735-2746.	3.7	14
198	Functional Coatings on Carbonâ€Bonded Ceramic Foam Filters for Steel Melt Filtration. Steel Research International, 2016, 87, 1030-1037.	1.8	14

#	Article	IF	CITATIONS
199	Wollastonite Foams From an Extruded Preceramic Polymer Mixed with CaCO ₃ Microparticles Assisted by Supercritical Carbon Dioxide. Advanced Engineering Materials, 2013, 15, 60-65.	3.5	13
200	Preparation and morphology of magnesium borate fibers via electrospinning. Journal of the European Ceramic Society, 2016, 36, 2593-2599.	5.7	13
201	Hydroxyapatite-coated ZrO2 scaffolds with a fluorapatite intermediate layer produced by direct ink writing. Journal of the European Ceramic Society, 2021, 41, 920-928.	5.7	13
202	Embedded direct ink writing of freeform ceramic components. Applied Materials Today, 2021, 23, 101005.	4.3	13
203	Conversion of organic-inorganic polymers to ceramics by ion implantation. Nuclear Instruments & Methods in Physics Research B, 1996, 120, 262-265.	1.4	12
204	SiOC Ceramic Monoliths with Hierarchical Porosity. International Journal of Applied Ceramic Technology, 2010, 7, 528-535.	2.1	12
205	Porous materials: Less is more. Journal of Materials Research, 2013, 28, 2187-2190.	2.6	12
206	Ovalbumin as foaming agent for Ti6Al4V foams produced by gelcasting. Journal of Alloys and Compounds, 2016, 687, 839-844.	5.5	12
207	Porosity effect on microstructure, mechanical, and fluid dynamic properties of Ti2AlC by direct foaming and gelâ€casting. Journal of the American Ceramic Society, 2018, 101, 5346-5357.	3.8	12
208	Osteogenic Properties of 3D-Printed Silica-Carbon-Calcite Composite Scaffolds: Novel Approach for Personalized Bone Tissue Regeneration. International Journal of Molecular Sciences, 2021, 22, 475.	4.1	12
209	Hybrid additive manufacturing for the fabrication of freeform transparent silica glass components. Additive Manufacturing, 2022, 54, 102727.	3.0	12
210	Tribology–Structure Relationships in Silicon Oxycarbide Thin Films. International Journal of Applied Ceramic Technology, 2010, 7, 675-686.	2.1	11
211	Advanced Open-Celled Structures from Low-Temperature Sintering of a Crystallization-Resistant Bioactive Glass. Materials, 2019, 12, 3653.	2.9	10
212	Glass powders and reactive silicone binder: Application to digital light processing of bioactive glass-ceramic scaffolds. Ceramics International, 2020, 46, 25299-25305.	4.8	10
213	Using ductile cores for enhancing the mechanical performance of hollow strut Î ² -TCP scaffolds fabricated by digital light processing. Ceramics International, 2021, 47, 10163-10173.	4.8	10
214	Fabrication of dense SiSiC ceramics by a hybrid additive manufacturing process. Journal of the American Ceramic Society, 2022, 105, 786-793.	3.8	10
215	Polymer-derived Biosilicate-C composite foams: Phase development and photothermal effect. Journal of the European Ceramic Society, 2021, 41, 380-388.	5.7	10
216	Cu/ZSM5-Geopolymer 3D-Printed Monoliths for the NH3-SCR of NOx. Catalysts, 2021, 11, 1212.	3.5	10

#	Article	lF	CITATIONS
217	Influence of the dipping coating procedure on the mechanical strength of soda-lime glass rods. Journal of Non-Crystalline Solids, 1988, 100, 461-465.	3.1	9
218	Optimization of Phase Purity of β′‧ialon Ceramics Produced from Silazanes and Nano‧ized Alumina. Journal of the American Ceramic Society, 2012, 95, 2148-2154.	3.8	9
219	Effect of heat treatment conditions on magnesium borate fibers prepared via electrospinning. Journal of the European Ceramic Society, 2018, 38, 4109-4117.	5.7	9
220	Biofunctionalization of bioactive ceramic scaffolds to increase the cell response for bone regeneration. Biomedical Materials (Bristol), 2021, 16, 055007.	3.3	9
221	3D Printing of Hierarchically Porous Lattice Structures Based on Ãkermanite Glass Microspheres and Reactive Silicone Binder. Journal of Functional Biomaterials, 2022, 13, 8.	4.4	9
222	Electrically Conducting PbyOx-SiO2 Glass Films Deposited by Reactive Radio-Frequency Magnetron Sputtering. Journal of the American Ceramic Society, 1993, 76, 2930-2932.	3.8	8
223	Ti/Ti ₃ SiC ₂ (/TiC) Bulk and Foam Composites by Pyrolysis of Polycarbosilane and TiH ₂ Mixtures. Advanced Engineering Materials, 2017, 19, 1600700.	3.5	8
224	Preparation and properties of biomorphic potassium-based geopolymer (KGP)-biocarbon (CB) composite. Ceramics International, 2018, 44, 12957-12964.	4.8	8
225	Polymer-Derived Biosilicate®-like Glass-Ceramics: Engineering of Formulations and Additive Manufacturing of Three-Dimensional Scaffolds. Materials, 2021, 14, 5170.	2.9	8
226	Novel bioceramics from digital light processing of calcite/acrylate blends and low temperature pyrolysis. Ceramics International, 2020, 46, 17140-17145.	4.8	8
227	Advanced Oxide Ceramics from a Preceramic Polymer and Fillers. Soft Materials, 2007, 4, 175-185.	1.7	7
228	In Situ Reinforcement of Ti6Al4V Matrix Composites by Polymerâ€Derivedâ€Ceramics Phases. Advanced Engineering Materials, 2015, 17, 866-875.	3.5	7
229	Highly Porous Polymer-Derived Bioceramics Based on a Complex Hardystonite Solid Solution. Materials, 2019, 12, 3970.	2.9	7
230	Enhanced 3D printed alumina ceramic cores via impregnation. Journal of the American Ceramic Society, 2022, 105, 181-192.	3.8	7
231	Structural optimization of printed structures by self-organized relaxation. Rapid Prototyping Journal, 2016, 22, 344-349.	3.2	6
232	Glass-ceramic foams and reticulated scaffolds by sinter-crystallization of a hardystonite glass. Journal of Non-Crystalline Solids, 2020, 528, 119744.	3.1	6
233	Direct Ink Writing of cylindrical lattice structures: A proof of concept. Open Ceramics, 2021, 7, 100139.	2.0	6
234	Silicate glass films deposited by reactive r.f. magnetron sputtering: electrical characterization. Thin Solid Films, 1994, 241, 25-29.	1.8	5

#	Article	IF	CITATIONS
235	Sol-gel processing of nanocrystalline haematite thin films. Journal of Materials Research, 1997, 12, 1441-1444.	2.6	5
236	Preceramic Polymerâ€Đerived SiAlON as Sintering Aid for Silicon Nitride. Journal of the American Ceramic Society, 2014, 97, 3407-3412.	3.8	5
237	An In Vivo Study in Rat Femurs of Bioactive Silicate Coatings on Titanium Dental Implants. Journal of Clinical Medicine, 2020, 9, 1290.	2.4	5
238	The effect of fillers on the fresh and hardened properties of 3D printed geopolymer lattices. Open Ceramics, 2021, 6, 100134.	2.0	5
239	Additive manufacturing and direct synthesis of sphene ceramic scaffolds from a silicone resin and reactive fillers. Journal of the European Ceramic Society, 2022, 42, 286-295.	5.7	5
240	Thermal evolution of Fe2O3-TiO2 sol-gel thin films. Journal of the European Ceramic Society, 1991, 8, 383-388.	5.7	4
241	Extruded Ceramic Microelectrodes for Biomedical Applications. International Journal of Artificial Organs, 2008, 31, 272-278.	1.4	4
242	Fabrication of ceramic particles from preceramic polymers using stop flow lithography. Journal of the European Ceramic Society, 2021, 41, 3314-3320.	5.7	4
243	Large scale additive manufacturing of artificial stone components using binder jetting and their X-ray microtomography investigations. Open Ceramics, 2021, 7, 100162.	2.0	4
244	Additive manufacturing of inorganic components using a geopolymer and binder jetting. Additive Manufacturing, 2022, 56, 102909.	3.0	4
245	Engineering of Silicone-based Blends for the Masked Stereolithography of Biosilicate/Carbon Composite Scaffolds. Journal of the European Ceramic Society, 2022, , .	5.7	4
246	Cytokine Removal: Hierarchical Porous Carbideâ€Derived Carbons for the Removal of Cytokines from Blood Plasma (Adv. Healthcare Mater. 6/2012). Advanced Healthcare Materials, 2012, 1, 682-682.	7.6	3
247	Additive Manufacturing. , 2021, , 203-221.		3
248	Additive Manufacturing of Ceramics from Liquid Feedstocks. , 2022, 1, 100012.		3
249	Other Developments and Special Applications. , 2006, , 596-620.		2
250	Applications of polymer derived ceramics. Advances in Applied Ceramics, 2009, 108, 453-453.	1.1	2
251	Glasses and ceramics from waste. Advances in Applied Ceramics, 2009, 108, 1-1.	1.1	2
252	Alkaliâ€free processing of advanced openâ€celled sinterâ€crystallized glassâ€ceramics. International Journal of Applied Glass Science, 2021, 12, 531-540.	2.0	2

#	Article	IF	CITATIONS
253	Printing glass in the nano. Nature Materials, 2021, 20, 1454-1456.	27.5	2
254	Ãkermanite glass microspheres: Preparation and perspectives of sinterâ€crystallization. International Journal of Applied Class Science, 2021, 12, 551-561.	2.0	1
255	Glass Reactive Sintering. , 2021, , 728-745.		1
256	Vitrification of Waste and Reuse of Waste-Derived Glass. , 2017, , 1-34.		1
257	Alkaline ion sensitivity of insulator-silicon structures with glass membranes prepared by the sol-gel technique. Journal of Materials Science Letters, 1991, 10, 1129-1131.	0.5	0
258	Fabrication and Microstructures of Porous Alumina with Porous-and-Denser Zebra-Patterned Surfaces Created by One-Pot Direct Blowing Method. Ceramic Engineering and Science Proceedings, 2019, , 69-76.	0.1	0
259	Porous Ceramics Processing. , 2021, , 342-345.		0
260	Leachability and basicity of Na―and Kâ€based geopolymer powders and lattices used as biodiesel catalysts. International Journal of Applied Ceramic Technology, 0, , .	2.1	0
261	Hierarchical Porosity Ceramic Components from Preceramic Polymers. , 0, , 1-12.		0