
Hannes Mutschler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1439579/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Nrd1–Nab3–Sen1 termination complex interacts with the Ser5-phosphorylated RNA polymerase II C-terminal domain. Nature Structural and Molecular Biology, 2008, 15, 795-804.	3.6	242
2	MaxSynBio: Avenues Towards Creating Cells from the Bottom Up. Angewandte Chemie - International Edition, 2018, 57, 13382-13392.	7.2	234
3	Compartmentalised RNA catalysis in membrane-free coacervate protocells. Nature Communications, 2018, 9, 3643.	5.8	225
4	A Novel Mechanism of Programmed Cell Death in Bacteria by Toxin–Antitoxin Systems Corrupts Peptidoglycan Synthesis. PLoS Biology, 2011, 9, e1001033.	2.6	202
5	Active coacervate droplets as a model for membraneless organelles and protocells. Nature Communications, 2020, 11, 5167.	5.8	135
6	Cooperative interaction of transcription termination factors with the RNA polymerase II C-terminal domain. Nature Structural and Molecular Biology, 2010, 17, 1195-1201.	3.6	124
7	Freeze–thaw cycles as drivers of complex ribozyme assembly. Nature Chemistry, 2015, 7, 502-508.	6.6	113
8	ÎμĴ¶ systems: their role in resistance, virulence, and their potential for antibiotic development. Journal of Molecular Medicine, 2011, 89, 1183-1194.	1.7	73
9	Heated gas bubbles enrich, crystallize, dry, phosphorylate and encapsulate prebiotic molecules. Nature Chemistry, 2019, 11, 779-788.	6.6	66
10	In vitro self-replication and multicistronic expression of large synthetic genomes. Nature Communications, 2020, 11, 904.	5.8	56
11	Both ATPase Domains of ClpA Are Critical for Processing of Stable Protein Structures. Journal of Biological Chemistry, 2009, 284, 31441-31452.	1.6	47
12	Freeze-thaw cycles induce content exchange between cell-sized lipid vesicles. New Journal of Physics, 2018, 20, 055008.	1.2	46
13	Random-sequence genetic oligomer pools display an innate potential for ligation and recombination. ELife, 2018, 7, .	2.8	43
14	Charge-density reduction promotes ribozyme activity in RNA–peptide coacervates via RNA fluidization and magnesium partitioning. Nature Chemistry, 2022, 14, 407-416.	6.6	41
15	Assembly Pathway of an AAA+ Protein:  Tracking ClpA and ClpAP Complex Formation in Real Time. Biochemistry, 2007, 46, 6183-6193.	1.2	37
16	The difficult case of an RNA-only origin of life. Emerging Topics in Life Sciences, 2019, 3, 469-475.	1.1	31
17	Assembly Dynamics and Stability of the Pneumococcal Epsilon Zeta Antitoxin Toxin (PezAT) System from Streptococcus pneumoniae. Journal of Biological Chemistry, 2010, 285, 21797-21806.	1.6	29
18	Non-canonical 3â€2-5â€2 Extension of RNA with Prebiotically Plausible Ribonucleoside 2â€2,3â€2-Cyclic Phospha	tes. 6.6	27

18 Journal of the American Chemical Society, 2014, 136, 5193-5196.

HANNES MUTSCHLER

#	Article	IF	CITATIONS
19	MaxSynBio: Wege zur Synthese einer Zelle aus nicht lebenden Komponenten. Angewandte Chemie, 2018, 130, 13566-13577.	1.6	27
20	Enhanced Ribozyme atalyzed Recombination and Oligonucleotide Assembly in Peptideâ€RNA Condensates. Angewandte Chemie - International Edition, 2021, 60, 26096-26104.	7.2	25
21	Templated Selfâ€Replication in Biomimetic Systems. Advanced Biology, 2019, 3, e1800313.	3.0	24
22	Enzymatic Synthesis of Nucleic Acids with Defined Regioisomeric 2′â€5′ Linkages. Angewandte Chemie - International Edition, 2015, 54, 15570-15573.	7.2	23
23	Nucleic Acid Catalysis under Potential Prebiotic Conditions. Chemistry - an Asian Journal, 2020, 15, 214-230.	1.7	19
24	Heat flows in rock cracks naturally optimize salt compositions for ribozymes. Nature Chemistry, 2021, 13, 1038-1045.	6.6	16
25	Special Issue on Bottomâ€Up Synthetic Biology. ChemBioChem, 2019, 20, 2533-2534.	1.3	13
26	Prebiotically Plausible RNA Activation Compatible with Ribozyme atalyzed Ligation. Angewandte Chemie - International Edition, 2021, 60, 2952-2957.	7.2	11
27	Probing self-regeneration of essential protein factors required for in vitro translation activity by serial transfer. Chemical Communications, 2020, 56, 15426-15429.	2.2	10
28	Cell-free expression of RNA encoded genes using MS2 replicase. Nucleic Acids Research, 2019, 47, 10956-10967.	6.5	9
29	In vitro characterisation of the MS2 RNA polymerase complex reveals host factors that modulate emesviral replicase activity. Communications Biology, 2022, 5, 264.	2.0	8
30	Type II Toxin-Antitoxin Loci: The Epsilon/zeta Family. , 2013, , 205-223.		7
31	Enhanced ribozyme atalyzed recombination and oligonucleotide assembly in peptideâ€RNA condensates. Angewandte Chemie, 0, , .	1.6	5
32	PrÃ b iotisch plausible RNAâ€Aktivierung kompatibel mit ribozymkatalysierter Ligation. Angewandte Chemie, 2021, 133, 2988-2993.	1.6	4
33	How DNA and RNA subunits might have formed to make the first genetic alphabet. Nature, 2020, 582, 33-34.	13.7	3
34	Generation of RNA with 2′, 3′-Cyclic Phosphates by Deoxyribozyme Cleavage in Frozen Solutions. Methods in Molecular Biology, 2022, 2439, 301-309.	0.4	1
35	Copy, paste, repeat — über die Synthese von Minimalzellen. BioSpektrum, 2018, 24, 365-367.	0.0	0
36	PCR Methods for the Generation of Catalytic ssDNA. Methods in Molecular Biology, 2022, 2439, 27-44.	0.4	0