
Robert Flaumenhaft

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1439481/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Megakaryocyte-derived microparticles: direct visualization and distinction from platelet-derived microparticles. Blood, 2009, 113, 1112-1121.	0.6	262
2	T granules in human platelets function in TLR9 organization and signaling. Journal of Cell Biology, 2012, 198, 561-574.	2.3	162
3	Molecular Basis of Platelet Granule Secretion. Arteriosclerosis, Thrombosis, and Vascular Biology, 2003, 23, 1152-1160.	1.1	144
4	Formation and fate of platelet microparticles. Blood Cells, Molecules, and Diseases, 2006, 36, 182-187.	0.6	131
5	The actin cytoskeleton differentially regulates platelet α-granule and dense-granule secretion. Blood, 2005, 105, 3879-3887.	0.6	118
6	The life cycle of platelet granules. F1000Research, 2018, 7, 236.	0.8	117
7	Generation of fully functional hepatocyte-like organoids from human induced pluripotent stem cells mixed with Endothelial Cells. Scientific Reports, 2019, 9, 8920.	1.6	113
8	Proteomic analysis of palmitoylated platelet proteins. Blood, 2011, 118, e62-e73.	0.6	105
9	A substrate-driven allosteric switch that enhances PDI catalytic activity. Nature Communications, 2016, 7, 12579.	5.8	98
10	Tie2 protects the vasculature against thrombus formation in systemic inflammation. Journal of Clinical Investigation, 2018, 128, 1471-1484.	3.9	89
11	Granule exocytosis is required for platelet spreading: differential sorting of α-granules expressing VAMP-7. Blood, 2012, 120, 199-206.	0.6	86
12	Endobrevin/VAMP-8–dependent dense granule release mediates thrombus formation in vivo. Blood, 2009, 114, 1083-1090.	0.6	78
13	Platelet- and Megakaryocyte-Derived Microparticles. Seminars in Thrombosis and Hemostasis, 2010, 36, 881-887.	1.5	74
14	Therapeutic Implications of Protein Disulfide Isomerase Inhibition in Thrombotic Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 16-23.	1.1	73
15	Targeting PAR1: Now What?. Trends in Pharmacological Sciences, 2017, 38, 701-716.	4.0	70
16	A polymer-based systemic hemostatic agent. Science Advances, 2020, 6, eaba0588.	4.7	69
17	Vasculopathy in COVID-19. Blood, 2022, 140, 222-235.	0.6	63
18	Vascular thiol isomerases. Blood, 2016, 128, 893-901.	0.6	58

ROBERT FLAUMENHAFT

#	Article	IF	CITATIONS
19	Localization and Quantification of Platelet-Rich Thrombi in Large Blood Vessels With Near-Infrared Fluorescence Imaging. Circulation, 2007, 115, 84-93.	1.6	57
20	Defective PDI release from platelets and endothelial cells impairs thrombus formation in Hermansky-Pudlak syndrome. Blood, 2015, 125, 1633-1642.	0.6	56
21	PAR1 agonists stimulate APC-like endothelial cytoprotection and confer resistance to thromboinflammatory injury. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E982-E991.	3.3	55
22	VAMP-7 links granule exocytosis to actin reorganization during platelet activation. Blood, 2015, 126, 651-660.	0.6	49
23	Effects Of Biased PAR1 Ligands On Platelets and Endothelial Cells. Blood, 2013, 122, 23-23.	0.6	46
24	Protein disulfide isomerase as an antithrombotic target. Trends in Cardiovascular Medicine, 2013, 23, 264-268.	2.3	41
25	Megakaryocytes package contents into separate α-granules that are differentially distributed in platelets. Blood Advances, 2019, 3, 3092-3098.	2.5	41
26	Gain-of-function CEBPE mutation causes noncanonical autoinflammatory inflammasomopathy. Journal of Allergy and Clinical Immunology, 2019, 144, 1364-1376.	1.5	37
27	Platelet Dysfunction and Thrombosis in JAK2 ^{V617F} -Mutated Primary Myelofibrotic Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, e262-e272.	1.1	31
28	PIEZO1 mediates a mechanothrombotic pathway in diabetes. Science Translational Medicine, 2022, 14, eabk1707.	5.8	28
29	Inhibition of Protein Disulfide Isomerase in Thrombosis. Basic and Clinical Pharmacology and Toxicology, 2016, 119, 42-48.	1.2	25
30	A specific plasminogen activator inhibitorâ€1 antagonist derived from inactivated urokinase. Journal of Cellular and Molecular Medicine, 2016, 20, 1851-1860.	1.6	23
31	Molecular basis of rutin inhibition of protein disulfide isomerase (PDI) by combined <i>in silico</i> and experimental methods. RSC Advances, 2018, 8, 18480-18491.	1.7	22
32	SNAP-23 and syntaxin-2 localize to the extracellular surface of the platelet plasma membrane. Blood, 2007, 110, 1492-1501.	0.6	20
33	?-granule secretion from ?-toxin permeabilized, MgATP-exposed platelets is induced independently by H+ and Ca2+. , 1999, 179, 1-10.		16
34	Bioorthogonal Chemistry Enables Singleâ€Molecule FRET Measurements of Catalytically Active Protein Disulfide Isomerase. ChemBioChem, 2021, 22, 134-138.	1.3	14
35	Gα13 Switch Region 2 Relieves Talin Autoinhibition to Activate αIIbβ3 Integrin. Journal of Biological Chemistry, 2016, 291, 26598-26612.	1.6	12
36	Advances in vascular thiol isomerase function. Current Opinion in Hematology, 2017, 24, 439-445.	1.2	12

ROBERT FLAUMENHAFT

#	Article	IF	CITATIONS
37	Cationic zinc is required for factor XII recruitment and activation by stimulated platelets and for thrombus formation in vivo. Journal of Thrombosis and Haemostasis, 2020, 18, 2318-2328.	1.9	12
38	VWF maturation and release are controlled by 2 regulators of Weibel-Palade body biogenesis: exocyst and BLOC-2. Blood, 2020, 136, 2824-2837.	0.6	12
39	The Platelet as a Model for Chemical Genetics. Chemistry and Biology, 2003, 10, 481-486.	6.2	11
40	Protein palmitoylation in signal transduction of hematopoietic cells. Hematology, 2005, 10, 511-519.	0.7	11
41	Thrombus formation reimagined. Blood, 2014, 124, 1697-1698.	0.6	9
42	Association of oral but not transdermal estrogen therapy with enhanced platelet reactivity in a subset of postmenopausal women. Menopause, 2009, 16, 407-412.	0.8	8
43	Flavonoids as Protein Disulfide Isomerase Inhibitors: Key Molecular and Structural Features for the Interaction. Journal of Agricultural and Food Chemistry, 2022, 70, 4475-4483.	2.4	8
44	Making (Anti)Sense of Factor XI in Thrombosis. New England Journal of Medicine, 2015, 372, 277-278.	13.9	7
45	Stressed platelets ASK1 for a MAPK. Blood, 2017, 129, 1066-1068.	0.6	7
46	Microvesicles, but not platelets, bud off from mouse bone marrow megakaryocytes. Blood, 2021, 138, 1998-2001.	0.6	6
47	The secreted tyrosine kinase VLK is essential for normal platelet activation and thrombus formation. Blood, 2022, 139, 104-117.	0.6	6
48	Vascular thiol isomerases: Structures, regulatory mechanisms, and inhibitor development. Drug Discovery Today, 2022, 27, 626-635.	3.2	6
49	Protease-Activated Receptor-1 Signaling. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 1809-1811.	1.1	5
50	Assays of Thiol Isomerase Enzymatic Activity. Methods in Molecular Biology, 2019, 1967, 133-148.	0.4	5
51	A new story ARC for α-granule formation. Blood, 2015, 126, 123-124.	0.6	4
52	A Chemical Genetic Analysis of Platelet Activation Blood, 2009, 114, 4009-4009.	0.6	4
53	SERCAmnavigating calcium signaling in platelets. Blood, 2016, 128, 1034-1035.	0.6	3
54	Does GPI b α prove the allosteric disulfide bond hypothesis?. Journal of Thrombosis and Haemostasis, 2019, 17, 849-851.	1.9	3

#	Article	IF	CITATIONS
55	Injury Length and Arteriole Constriction Shape Clot Growth and Blood-Flow Acceleration in a Mouse Model of Thrombosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 2114-2126.	1.1	3
56	Development Of Second Generation Thiol Isomerase Inhibitors To Prevent Thrombus Formation. Blood, 2013, 122, 926-926.	0.6	3
57	Getting in shape with RanBP10. Blood, 2009, 114, 5412-5413.	0.6	2
58	α-granules: a story in the making. Blood, 2012, 120, 4908-4909.	0.6	2
59	Bioengineering in Platelet Biology. Thrombosis Research, 2014, 133, 523-524.	0.8	2
60	ML359, a Small Molecule Inhibitor of Protein Disulfide Isomerase That Prevents Thrombus Formation and Inhibits Oxidoreductase but Not Transnitrosylase Activity. Blood, 2014, 124, 2880-2880.	0.6	2
61	Platelets feel your pain. Blood, 2004, 104, 913-913.	0.6	1
62	Proteomic Analysis of Palmitoylated Platelet Proteins. Blood, 2010, 116, 2017-2017.	0.6	1
63	Animal Models of Arterial and Venous Thrombosis. Blood, 2014, 124, SCI-2-SCI-2.	0.6	1
64	Identification of a Novel Par1 inhibitor Using a Chemical Genetic Screen. Blood, 2010, 116, 2018-2018.	0.6	1
65	VPS33B: let there be α-granules. Blood, 2005, 106, 4022-4023.	0.6	Ο
66	Platelet proteoglycans packing it in. Blood, 2008, 111, 3308-3309.	0.6	0
67	Young platelets out-of-control. Thrombosis and Haemostasis, 2016, 116, 780.	1.8	Ο
68	Differential Regulation of α-Granule and Dense Granule Secretion by an Actin Cytoskeletal Barrier Blood, 2004, 104, 3528-3528.	0.6	0
69	Protein Palmitoylation Participates in PAR1-Mediated Platelet Activation Blood, 2004, 104, 1560-1560.	0.6	0
70	Real-Time Imaging of Platelet-Rich Thrombi in Thick-Walled Blood Vessels Using Near-Infrared Fluorescence Light Blood, 2006, 108, 383-383.	0.6	0
71	The Platelet Actin Cytoskeleton Associates Directly with Syntaxin-4 and Participates in α-Granule Secretion Blood, 2008, 112, 1839-1839.	0.6	0
72	Localization of VAMP Isoforms In Platelets Reveals Separate Granule Populations with Distinct Functions. Blood, 2010, 116, 2015-2015.	0.6	0

ROBERT FLAUMENHAFT

#	Article	IF	CITATIONS
73	A Chemical Genetic Analysis of Platelet Activation Identifies An Antithrombotic Allosteric Modulator That Acts through Helix 8 of Par1. Blood, 2010, 116, 483-483.	0.6	0
74	Anticoagulation Inhibits Tumor Cell-Mediated Release Of Platelet Angiogenic Proteins and Disrupts The Platelet Angiogenic Potential. Blood, 2013, 122, 2303-2303.	0.6	0
75	Regulation of Protein Disulfide Isomerase By S-Nitrosylation Controls Its Function during Thrombus Formation. Blood, 2014, 124, 93-93.	0.6	0
76	"Self-Deposition―of Matrix Proteins from Platelet α-Granules Enable Extended Adhesion and Spreading on Micron/Submicron-Scale Fibrinogen and Collagen Substrates Blood, 2014, 124, 2764-2764.	0.6	0
77	The Secreted Tyrosine Kinase Vlk Is Essential for Normal Platelet Activation and Thrombus Formation. Blood, 2020, 136, 10-11.	0.6	0
78	Calpain-1 inhibition attenuates in vivo thrombosis in a humanized model of sickle cell disease. Thrombosis Research, 2022, 211, 123-126.	0.8	0