Pragasen Pillay

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1438659/publications.pdf

Version: 2024-02-01

198 papers 2,962 citations

32 h-index 233125 45 g-index

198 all docs 198 docs citations

198 times ranked 2042 citing authors

#	Article	IF	CITATIONS
1	Power Electronic Converter Based Induction Motor Emulator With Stator Winding Faults. IEEE Transactions on Industrial Electronics, 2023, 70, 4440-4449.	5.2	4
2	Power-Hardware-In-The-Loop-Based Emulation of a Self-Excited Induction Generator Under Unbalanced Conditions. IEEE Transactions on Industry Applications, 2022, 58, 588-598.	3.3	5
3	Torque Pulsation Reduction During Magnetization in Variable Flux Machines. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2022, 10, 1703-1711.	3.7	2
4	Emulation of induction machines subject to industrial grid harmonics. , 2022, , .		1
5	A Comprehensive Review on Signal-Based and Model-Based Condition Monitoring of Wind Turbines: Fault Diagnosis and Lifetime Prognosis. Proceedings of the IEEE, 2022, 110, 754-806.	16.4	43
6	Fault-Tolerant Individual Pitch Control for Load Mitigation in Wind Turbines With Actuator Faults. IEEE Transactions on Industrial Electronics, 2021, 68, 532-543.	5.2	37
7	An Investigation of Power-Hardware-in-the-Loop- Based Electric Machine Emulation for Driving Inverter Open-Circuit Faults. IEEE Transactions on Transportation Electrification, 2021, 7, 170-182.	5.3	13
8	Back-EMF Analysis of a Variable Flux Machine for Different Magnetization States. IEEE Transactions on Industrial Electronics, 2021, 68, 9125-9135.	5.2	19
9	Detailed Electrochemical Model of Microphotosynthetic Power Cells. IEEE Transactions on Industry Applications, 2021, 57, 1703-1714.	3.3	3
10	A Formula for Class F Induction Motor Specified Temperature. , 2021, , .		4
10	A Formula for Class F Induction Motor Specified Temperature. , 2021, , . Review on Microphotosynthetic Power Cells—A Lowâ€Power Energyâ€Harvesting Bioelectrochemical Cell: From Fundamentals to Applications. Energy Technology, 2021, 9, 2001002.	1.8	6
	Review on Microphotosynthetic Power Cells—A Lowâ€Power Energyâ€Harvesting Bioelectrochemical	1.8 3.3	
11	Review on Microphotosynthetic Power Cells—A Lowâ€Power Energyâ€Harvesting Bioelectrochemical Cell: From Fundamentals to Applications. Energy Technology, 2021, 9, 2001002. Emulation of an Induction Machine for Unbalanced Grid Faults. IEEE Transactions on Industry		6
11 12	Review on Microphotosynthetic Power Cells—A Lowâ€Power Energyâ€Harvesting Bioelectrochemical Cell: From Fundamentals to Applications. Energy Technology, 2021, 9, 2001002. Emulation of an Induction Machine for Unbalanced Grid Faults. IEEE Transactions on Industry Applications, 2021, 57, 4625-4635. Parallel hybrid linear-switched power amplifier and control strategy for machine emulation.	3.3	5
11 12 13	Review on Microphotosynthetic Power Cells—A Lowâ€Power Energyâ€Harvesting Bioelectrochemical Cell: From Fundamentals to Applications. Energy Technology, 2021, 9, 2001002. Emulation of an Induction Machine for Unbalanced Grid Faults. IEEE Transactions on Industry Applications, 2021, 57, 4625-4635. Parallel hybrid linear-switched power amplifier and control strategy for machine emulation. International Journal of Electrical Power and Energy Systems, 2021, 131, 107063.	3.3	6 5
11 12 13	Review on Microphotosynthetic Power Cells—A Lowâ€Power Energyâ€Harvesting Bioelectrochemical Cell: From Fundamentals to Applications. Energy Technology, 2021, 9, 2001002. Emulation of an Induction Machine for Unbalanced Grid Faults. IEEE Transactions on Industry Applications, 2021, 57, 4625-4635. Parallel hybrid linear-switched power amplifier and control strategy for machine emulation. International Journal of Electrical Power and Energy Systems, 2021, 131, 107063. Modeling and Design of a Tubular Linear Generator for Direct-Drive Free-Piston Engine., 2021,	3.3	6 5 1 0
11 12 13 14	Review on Microphotosynthetic Power Cellsâ€"A Lowâ€Power Energyâ€Harvesting Bioelectrochemical Cell: From Fundamentals to Applications. Energy Technology, 2021, 9, 2001002. Emulation of an Induction Machine for Unbalanced Grid Faults. IEEE Transactions on Industry Applications, 2021, 57, 4625-4635. Parallel hybrid linear-switched power amplifier and control strategy for machine emulation. International Journal of Electrical Power and Energy Systems, 2021, 131, 107063. Modeling and Design of a Tubular Linear Generator for Direct-Drive Free-Piston Engine. , 2021, , . Design Criteria for EV Drivetrain. , 2021, , . Automatic Flux Linkage and Inductance measurement for a Variable Flux Machine at Different	3.3	6 5 1 0

#	Article	IF	Citations
19	A Flexible Model of PMSM to Design High Density Traction Systems for Electric Vehicles., 2021,,.		1
20	High Torque Density Traction Motor Using Soft Magnetic Composites Material with Surface Ring-type Halbach-array PM Rotor Topology. , $2021, $, .		2
21	Induction Machine Parameters Determination and the Impact of Stator/Rotor Leakage Split Ratio on Its Performance. IEEE Transactions on Industrial Electronics, 2020, 67, 5291-5301.	5.2	8
22	Fault-Tolerant Cooperative Control in a Wind Farm Using Adaptive Control Reconfiguration and Control Reallocation. IEEE Transactions on Sustainable Energy, 2020, 11, 2119-2129.	5 . 9	13
23	Space Vector Based Capacitor Voltage Balancing for a Three-Level NPC Traction Inverter Drive. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8, 1276-1286.	3.7	24
24	Co-simulation Based Electric Vehicle Drive for a Variable Flux Machine. , 2020, , .		4
25	Effect of Skewing in a Variable Flux Interior Permanent Magnet Synchronous Machine. IEEE Transactions on Industry Applications, 2020, 56, 6399-6410.	3.3	12
26	Mathematical Model of an Interior PMSM With Aligned Magnet and Reluctance Torques. IEEE Transactions on Transportation Electrification, 2020, 6, 647-658.	5. 3	28
27	Automated Current Control Method for Flux-Linkage Measurement of Synchronous Reluctance Machines. IEEE Transactions on Industry Applications, 2020, 56, 1464-1474.	3.3	9
28	Emulation of an Isolated Induction Generator Under Unbalanced Conditions., 2020,,.		5
29	Sinusoidal Shaped Surface Permanent Magnet Motor Using Cold Spray Additive Manufacturing., 2020,		6
30	Induction Machine Emulation under Asymmetric Grid Faults., 2020,,.		9
31	Power Hardware-in-the-Loop based Emulation of an Open-Winding Permanent Magnet Machine. , 2020, , .		5
32	Parameter Measurements and Modeling of a Novel Hybrid Variable Flux Machine with Series Rare-Earth and AlNiCo Magnets. , 2020, , .		1
33	A Power Hardware-In-The-Loop Emulation of a Faulted Inverter. , 2019, , .		7
34	A Form based Induction Machine Efficiency Estimation Tool. , 2019, , .		1
35	Induction Machine Rapid Performance Test. IEEE Transactions on Industry Applications, 2019, 55, 4685-4691.	3.3	6
36	Induction Machine Efficiency Evaluation Using the Finite Element Analysis Software and a New Mechanical Loss Formula. , 2019, , .		2

#	Article	IF	Citations
37	Design and Analysis of a Novel PM-Assisted Synchronous Reluctance Machine Topology With AlNiCo Magnets. IEEE Transactions on Industry Applications, 2019, 55, 4733-4742.	3.3	43
38	Linear Amplifier-Based Power-Hardware-in-the-Loop Emulation of a Variable Flux Machine. IEEE Transactions on Industry Applications, 2019, 55, 4624-4632.	3.3	35
39	Feasibility Studies of Micro Photosynthetic Power Cells as a Competitor of Photovoltaic Cells for Low and Ultra-Low Power IoT Applications. Energies, 2019, 12, 1595.	1.6	9
40	Back EMF, Torque–Angle, and Core Loss Characterization of a Variable-Flux Permanent-Magnet Machine. IEEE Transactions on Transportation Electrification, 2019, 5, 371-384.	5.3	8
41	Efficiency Estimation of the Induction Machine by Particle Swarm Optimization Using Rapid Test Data With Range Constraints. IEEE Transactions on Industrial Electronics, 2019, 66, 5883-5894.	5.2	17
42	Experimental Study of Torque-Ripple and its Effect on the Flux Weakening Range of Synchronous Reluctance Machines. , 2019, , .		1
43	Hardware-in-the-loop Simulations of Inverter Faults in an Electric Drive System., 2019,,.		2
44	Design of Hybrid Variable Flux Motors for Enhanced Wide-Speed Performance., 2019,,.		11
45	Updated Electrochemical Model of Micro Photosynthetic Power Cells. , 2019, , .		1
46	Prediction of Drive-Fed Induction Machine Efficiency Using Sine Wave Efficiency Results., 2019,,.		0
47	A Closed-loop Magnetization State Controller for Variable-Flux IPMSMs. , 2019, , .		1
48	Effect of Magnetization Pulse Width on the Back EMF of a Variable Flux Machine and on Inverter Sizing. , $2019, \ldots$		4
49	Novel Flux Linkage Estimation Algorithm for a Variable Flux PMSM. IEEE Transactions on Industry Applications, 2018, 54, 2319-2335.	3.3	35
50	Torque Characterization of a Synchronous Reluctance Machine Using an Analytical Model. IEEE Transactions on Transportation Electrification, 2018, 4, 506-516.	5.3	29
51	Characterization of a Variable Flux Machine for Transportation Using a Vector-Controlled Drive. IEEE Transactions on Transportation Electrification, 2018, 4, 494-505.	5.3	38
52	Power Electronic Converter-Based Induction Motor Emulator Including Main and Leakage Flux Saturation. IEEE Transactions on Transportation Electrification, 2018, 4, 483-493.	5.3	33
53	Power Electronic Converter Based PMSG Emulator: A Testbed for Renewable Energy Experiments. IEEE Transactions on Industry Applications, 2018, 54, 3626-3636.	3.3	32
54	Design Optimization of a Spoke-Type Variable Flux Motor Using AlNiCo for Electrified Transportation. IEEE Transactions on Transportation Electrification, 2018, 4, 536-547.	5. 3	17

#	Article	IF	Citations
55	Challenges in Modeling of Large Synchronous Machines. IEEE Transactions on Industry Applications, 2018, 54, 1652-1662.	3.3	5
56	Emulation of a Permanent-Magnet Synchronous Generator in Real-Time Using Power Hardware-in-the-Loop. IEEE Transactions on Transportation Electrification, 2018, 4, 474-482.	5.3	34
57	Self-Excitation Criteria of the Synchronous Reluctance Generator in Stand-Alone Mode of Operation. IEEE Transactions on Industry Applications, 2018, 54, 1245-1253.	3.3	24
58	Application of FMRAC to faultâ€ŧolerant cooperative control of a wind farm with decreased power generation due to blade erosion/debris buildup. International Journal of Adaptive Control and Signal Processing, 2018, 32, 628-645.	2.3	6
59	Experimental Investigation of MTPA Trajectory of Synchronous Reluctance Machine. , 2018, , .		6
60	Analytical Modeling of a Segmented-Pole Synchronous Reluctance Machine with CRGO Laminations. , 2018, , .		0
61	Power-Hardware-in-the-Loop Based Emulation of a Variable Flux Machine. , 2018, , .		15
62	Automatic Inductance Measurements of Synchronous Reluctance Machines Including Cross-Saturation Using Real-Time Systems. , 2018, , .		7
63	Independent Phase Current Control of a Permanent Magnet Motor. , 2018, , .		0
64	Sensing Circuitry for Real-Time Power Studies of Micro-Photosynthetic Power Cells. , 2018, , .		3
65	Effect of Skewing in a Variable Flux Interior Permanent Magnet Synchronous Machine. , 2018, , .		3
66	Design and Control of a Peak Load Shaving System for the Louis-Hippolyte-La Fontaine Tunnel. , 2018, , .		3
67	Closed-Loop Control for a Rotational Core Loss Tester. IEEE Transactions on Industry Applications, 2018, 54, 5888-5896.	3.3	2
68	Magnetization and Demagnetization Energy Estimation and Torque Characterization of a Variable-Flux Machine. IEEE Transactions on Energy Conversion, 2018, 33, 1837-1845.	3.7	18
69	Induction Machine Parameter Range Constraints in Genetic Algorithm Based Efficiency Estimation Techniques. IEEE Transactions on Industry Applications, 2018, 54, 4186-4197.	3.3	20
70	The Loss of Self-Excitation Capability in Stand-Alone Synchronous Reluctance Generators. IEEE Transactions on Industry Applications, 2018, 54, 6290-6298.	3.3	7
71	Simple and Accurate Algorithm for Small- and Medium-Sized Three-Phase IM Efficiency Estimation Based on No-Load Tests. IEEE Transactions on Industry Applications, 2018, 54, 5812-5821.	3.3	10
72	A Versatile Power-Hardware-in-the-Loop-Based Emulator for Rapid Testing of Transportation Electric Drives. IEEE Transactions on Transportation Electrification, 2018, 4, 901-911.	5.3	64

#	Article	IF	CITATIONS
73	Operating Envelopes of the Variable-Flux Machine With Positive Reluctance Torque. IEEE Transactions on Transportation Electrification, 2018, 4, 707-719.	5.3	28
74	Core Loss Calculation in a Variable Flux Permanent Magnet Machine for Electrified Transportation. IEEE Transactions on Transportation Electrification, 2018, 4, 857-866.	5.3	8
75	Braking a Variable Flux-Intensifying IPMSM in Minimal Time. IEEE Transactions on Transportation Electrification, 2018, 4, 867-876.	5.3	8
76	Fabrication and Assembly Method for Synchronous Reluctance Machines. IEEE Transactions on Industry Applications, 2018, 54, 4227-4235.	3.3	6
77	Rotational Core Loss Magnetizer: Design and Measurements. IEEE Transactions on Industry Applications, 2018, 54, 4355-4364.	3.3	11
78	A Novel In Situ Efficiency Estimation Algorithm for Three-Phase Induction Motors Operating With Distorted Unbalanced Voltages. IEEE Transactions on Industry Applications, 2017, 53, 5338-5347.	3.3	38
79	Real-Time Emulation of a Pressure-Retarded Osmotic Power Generation System. IEEE Transactions on Industry Applications, 2017, 53, 5768-5776.	3.3	8
80	Torque and power improvement for a variable flux permanent magnet synchronous machine., 2017,,.		5
81	Closed loop control for a rotational core loss tester. , 2017, , .		1
82	Design optimization of a new spoke type variable-flux motor using AlNiCo permanent-magnet., 2017,,.		6
83			
	Electrochemical Modeling and Equivalent Circuit Representation of a Microphotosynthetic Power Cell. IEEE Transactions on Industrial Electronics, 2017, 64, 1561-1571.	5.2	27
84	Electrochemical Modeling and Equivalent Circuit Representation of a Microphotosynthetic Power Cell. IEEE Transactions on Industrial Electronics, 2017, 64, 1561-1571. Introduction to PRO for energy conversion applications including an electric equivalent circuit. IET Renewable Power Generation, 2017, 11, 115-122.	5.2 1.7	27
84	Cell. IEEE Transactions on Industrial Electronics, 2017, 64, 1561-1571. Introduction to PRO for energy conversion applications including an electric equivalent circuit. IET		
	Cell. IEEE Transactions on Industrial Electronics, 2017, 64, 1561-1571. Introduction to PRO for energy conversion applications including an electric equivalent circuit. IET Renewable Power Generation, 2017, 11, 115-122. Induction machine parameter range constraints in genetic algorithm based efficiency estimation		4
85	Cell. IEEE Transactions on Industrial Electronics, 2017, 64, 1561-1571. Introduction to PRO for energy conversion applications including an electric equivalent circuit. IET Renewable Power Generation, 2017, 11, 115-122. Induction machine parameter range constraints in genetic algorithm based efficiency estimation techniques., 2017,,.		1
85	Cell. IEEE Transactions on Industrial Electronics, 2017, 64, 1561-1571. Introduction to PRO for energy conversion applications including an electric equivalent circuit. IET Renewable Power Generation, 2017, 11, 115-122. Induction machine parameter range constraints in genetic algorithm based efficiency estimation techniques., 2017, , . Induction motor emulation including main and leakage flux saturation effects., 2017, , .		4 1 9
85 86 87	Cell. IEEE Transactions on Industrial Electronics, 2017, 64, 1561-1571. Introduction to PRO for energy conversion applications including an electric equivalent circuit. IET Renewable Power Generation, 2017, 11, 115-122. Induction machine parameter range constraints in genetic algorithm based efficiency estimation techniques., 2017, Induction motor emulation including main and leakage flux saturation effects., 2017,		4 1 9

#	Article	IF	Citations
91	High-resolution low-cost rotor position sensor for traction applications. , 2017, , .		5
92	The loss of self-excitation capability in stand-alone synchronous reluctance generators. , 2017, , .		6
93	Magnet design consideration of a variable-flux PM machine. , 2017, , .		4
94	PM assisted synchronous reluctance machine design using AlNiCo magnets. , 2017, , .		15
95	A novel fabrication and assembly method for synchronous reluctance machines. , 2017, , .		2
96	Simple and accurate algorithm for three-phase IM efficiency estimation from only no-load tests. , 2017, , .		3
97	A leading power factor based DC-link voltage balancing algorithm for three-level neutral-point-clamped traction inverter drive. , 2016, , .		1
98	Torque characterization of a synchronous reluctance machine using an analytical model., 2016,,.		6
99	Torque-angle characterization of a Synchronous Reluctance Machine. , 2016, , .		2
100	Self-excitation criteria of the synchronous reluctance generator in stand-alone mode of operation. , 2016, , .		6
101	Power electronic converter-based three-phase induction motor emulator., 2016,,.		13
102	An analytical model for a spoke type variable flux permanent magnet motor in no-load condition. , 2016, , .		7
103	A novel in situ efficiency estimation algorithm for three-phase induction motors operating with distorted unbalanced voltages. , $2016, ,$		2
104	Torque and core loss characterization of a variable-flux permanent-magnet machine. , 2016, , .		4
105	Torque ripple reduction of a variable flux motor. , 2016, , .		4
106	Emulation of a permanent magnet synchronous generator in real-time using power hardware-in-the-loop. , 2016, , .		16
107	Online rotor flux linkage estimation for a variable flux interior permanent magnet syncronous machine operating at different flux density levels. , 2016, , .		2
108	Micro photosynthetic cell for power generation from algae: Bio-electrochemical modeling and verification. Technology, 2016, 04, 249-258.	1.4	6

#	Article	IF	Citations
109	Power control strategy for fixed-pitch PMSG-based hydrokinetic turbine. , 2016, , .		6
110	A New Stray-Load Loss Formula for Small and Medium-Sized Induction Motors. IEEE Transactions on Energy Conversion, 2016, 31, 1221-1227.	3.7	45
111	A Novel Grain-Oriented Lamination Rotor Core Assembly for a Synchronous Reluctance Traction Motor With a Reduced Torque Ripple Algorithm. IEEE Transactions on Industry Applications, 2016, 52, 3729-3738.	3.3	77
112	Power sharing control strategy for a no-storage hydrokinetic-diesel system in an isolated AC mini-grid. , 2016 , , .		0
113	Vector controlled drive to measure inductances of variable flux machine. , 2016, , .		4
114	Rotational core loss test setup: Design and measurement. , 2016, , .		0
115	DC-Bus Voltage Balancing Algorithm for Three-Level Neutral-Point-Clamped (NPC) Traction Inverter Drive With Modified Virtual Space Vector. IEEE Transactions on Industry Applications, 2016, 52, 3958-3967.	3.3	66
116	Design of a Sinusoidally Wound 2-D Rotational Core Loss Setup With the Consideration of Sensor Sizing. IEEE Transactions on Industry Applications, 2016, 52, 3022-3032.	3.3	10
117	Shielding of the <italic>Z</italic> -Component of the Magnetic Field in a 2-D Magnetizer With a Deep Yoke. IEEE Transactions on Industry Applications, 2016, 52, 2289-2296.	3.3	3
118	A Novel Technique for <italic>In Situ</italic> Efficiency Estimation of Three-Phase IM Operating With Unbalanced Voltages. IEEE Transactions on Industry Applications, 2016, 52, 2843-2855.	3.3	23
119	Discontinuous Hybrid-PWM-Based DC-Link Voltage Balancing Algorithm for a Three-Level Neutral-Point-Clamped (NPC) Traction Inverter Drive. IEEE Transactions on Industry Applications, 2016, 52, 3071-3082.	3.3	45
120	Experimental investigation of pressure retarded osmosis for renewable energy conversion: Towards increased net power. Applied Energy, 2016, 164, 425-435.	5.1	40
121	Modified DC-Bus Voltage-Balancing Algorithm Based Three-Level Neutral-Point-Clamped IPMSM Drive for Electric Vehicle Applications. IEEE Transactions on Industrial Electronics, 2016, 63, 761-772.	5. 2	55
122	Modified DC-Bus Voltage Balancing Algorithm for a Three-Level Neutral-Point-Clamped PMSM Inverter Drive With Reduced Common-Mode Voltage. IEEE Transactions on Industry Applications, 2016, 52, 278-292.	3.3	51
123	Design of a power electronic emulator for parallel operation of renewable energy resources in microgrids. , 2015, , .		9
124	A performance comparison study of continuous and discontinuous hybrid-PWM control for a 3-level neutral point clamped (NPC) traction inverter drive. , $2015, \dots$		3
125	Design of a Power Electronic Emulator for Series Hybrid Electric Vehicle Powertrains. , 2015, , .		2
126	Design Considerations of 2-D Magnetizers for High Flux Density Measurements. IEEE Transactions on Industry Applications, 2015, 51, 3629-3638.	3.3	11

#	Article	IF	CITATIONS
127	A Novel <italic>In Situ</italic> Efficiency Estimation Algorithm for Three-Phase IM Using GA, IEEE Method F1 Calculations, and Pretested Motor Data. IEEE Transactions on Energy Conversion, 2015, 30, 1092-1102.	3.7	38
128	Consideration of Design and Operation on Rotational Flux Density Distributions in Hydrogenerator Stators. IEEE Transactions on Energy Conversion, 2015, 30, 1585-1594.	3.7	10
129	Core loss performance of a new PM machine topology for electric vehicles. , 2015, , .		3
130	Modified virtual space vector based DC-bus voltage balancing for three-level neutral point clamped (NPC) traction inverter drive. , $2015, \dots$		3
131	Reduced common mode voltage based DC-bus voltage balancing algorithm for three-level neutral point clamped (NPC) inverter drive. , 2015, , .		2
132	Hysteresis-Dependent Model for the Brushless Exciter of Synchronous Generators. IEEE Transactions on Energy Conversion, 2015, 30, 1321-1328.	3.7	12
133	Design of Variable-Flux Permanent-Magnet Machines Using Alnico Magnets. IEEE Transactions on Industry Applications, 2015, 51, 4482-4491.	3.3	84
134	Control strategy of a variable flux machine using AlNiCo permanent magnets. , 2015, , .		35
135	A DC-Link Voltage Balancing Algorithm for Three-Level Neutral Point Clamped (NPC) Traction Inverter Drive in Field Weakening Region. , 2015, , .		1
136	Shielding of the z-component of the magnetic field in a 2-D magnetizer with a deep yoke. , 2015, , .		6
137	A Modulation Strategy for a Three Level Inverter Synchronous Reluctance Motor (SynRM) Drive. IEEE Transactions on Industry Applications, 2015, , 1-1.	3.3	7
138	A hybrid-PWM based DC-link voltage balancing algorithm for a 3-level neutral-point-clamped (NPC) DC/AC traction inverter drive. , 2015, , .		14
139	A Hybrid PWM-Based DC-Link Voltage Balancing Algorithm for a Three-Level NPC DC/AC Traction Inverter Drive. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2015, 3, 805-816.	3.7	43
140	A Novel Algorithm for Estimating Refurbished Three-Phase Induction Motors Efficiency Using Only No-Load Tests. IEEE Transactions on Energy Conversion, 2015, 30, 615-625.	3.7	45
141	Design of Variable Flux Permanent-Magnet Machine for Reduced Inverter Rating. IEEE Transactions on Industry Applications, 2015, 51, 3666-3674.	3.3	108
142	A novel grain oriented lamination rotor core assembly for a synchronous reluctance traction motor with reduced torque ripple. , 2015 , , .		1
143	A Three-Level Neutral-Point-Clamped Inverter Synchronous Reluctance Machine Drive. IEEE Transactions on Industry Applications, 2015, 51, 4531-4540.	3.3	13
144	A Mechanically Robust Rotor With Transverse Laminations for a Wide-Speed-Range Synchronous Reluctance Traction Motor. IEEE Transactions on Industry Applications, 2015, 51, 4404-4414.	3.3	43

#	Article	IF	Citations
145	Modeling pressure-retarded osmotic power in commercial length membranes. Renewable Energy, 2015, 76, 619-627.	4.3	35
146	Pressure-retarded osmotic power system model considering non-ideal effects. Renewable Energy, 2015, 75, 416-424.	4.3	52
147	Design of high torque density variable flux permanent magnet machine using Alnico magnets. , 2014, , .		25
148	Comparative Analysis Between Two-Level and Three-Level DC/AC Electric Vehicle Traction Inverters Using a Novel DC-Link Voltage Balancing Algorithm. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2014, 2, 529-540.	3.7	112
149	Comparison of two modulation strategies for a three level inverter synchronous reluctance motor (SynRM) drive. , 2014 , , .		1
150	Pressure-retarded osmotic power for remote communities in Quebec., 2014,,.		1
151	A novel DC-link voltage balancing algorithm for a 3-level neutral point clamped (NPC) traction inverter for an electric vehicle IPMSM drive. , 2014, , .		3
152	Evaluation of measurement uncertainty in induction machines efficiency estimation. , 2014, , .		7
153	A mechanically robust rotor with transverse-laminations for a synchronous reluctance machine for traction applications. , $2014, , .$		12
154	Derivation of an equivalent electrical circuit model for degradation mechanisms in high temperature pem fuel cells in performance estimation. , 2014, , .		1
155	Three level NPC inverter DC capacitor sizing for a synchronous reluctance machine drive. , 2014, , .		7
156	A performance comparison study of space-vector and carrier-based PWM techniques for a 3-level neutral point clamped (NPC) traction inverter drive. , 2014, , .		10
157	Design of building integrated photovoltaic system to the grid with power quality improvement features for Central African countries. , 2014 , , .		2
158	A Sizing Methodology of the Synchronous Reluctance Motor for Traction Applications. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2014, 2, 329-340.	3.7	131
159	A Hybrid Model for Improved Hysteresis Loss Prediction in Electrical Machines. IEEE Transactions on Industry Applications, 2014, 50, 2503-2511.	3.3	11
160	Performance comparison study of two and three-level inverter for electric vehicle application. , 2014, , .		15
161	Frequency Support From a Fixed-Pitch Type-2 Wind Turbine in a Diesel Hybrid Mini-Grid. IEEE Transactions on Sustainable Energy, 2014, 5, 110-118.	5.9	20
162	DC-Link Voltage Balancing for a Three-Level Electric Vehicle Traction Inverter Using an Innovative Switching Sequence Control Scheme. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2014, 2, 296-307.	3.7	96

#	Article	IF	Citations
163	Real time operating system based online rotor position error minimization technique (RPEM) for permanent magnet synchronous machines. , $2013, \dots$		О
164	Full Load Efficiency Estimation of Refurbished Induction Machines From No-Load Testing. IEEE Transactions on Energy Conversion, 2013, 28, 317-326.	3.7	19
165	The influence of rotating field direction on core losses in electrical machine laminations. , 2013, , .		1
166	Degradation of high temperature PEM fuel cells and the impact on electrical performance., 2013,,.		4
167	Electrical circuit analysis of CO poisoning in high temperature PEM fuel cells for rapid fault diagnostics. , 2013, , .		4
168	A hybrid model for improved hysteresis loss prediction in electrical machines. , 2013, , .		1
169	Modified DC-link voltage balancing algorithm for a 3-level neutral point clamped (NPC) traction inverter based electric vehicle PMSM drive. , 2013, , .		11
170	Online fault diagnostics and impedance signature mapping of High Temperature PEM fuel cells using rapid small signal injection. , 2013, , .		5
171	The minor hysteresis loop under rotating magnetic fields in machine laminations. , 2013, , .		2
172	Core loss prediction in electrical machine laminations considering skin effect and minor hysteresis loops. , 2012, , .		4
173	On the coefficients of core loss formulas for electrical machines. , 2012, , .		5
174	An Algorithm for Nonintrusive In Situ Efficiency Estimation of Induction Machines Operating With Unbalanced Supply Conditions. IEEE Transactions on Industry Applications, 2012, 48, 1890-1900.	3.3	20
175	Design of a Novel Test Fixture to Measure Rotational Core Losses in Machine Laminations. IEEE Transactions on Industry Applications, 2012, 48, 1467-1477.	3.3	23
176	Rotational core loss measurements in clockwise and counterclockwise directions. , 2012, , .		6
177	Modeling and emulation of fuel cell flooding behavior. , 2012, , .		1
178	Comparison of Two Methods for Full-Load In Situ Induction Motor Efficiency Estimation From Field Testing in the Presence of Over/Undervoltages and Unbalanced Supplies. IEEE Transactions on Industry Applications, 2012, 48, 1911-1921.	3.3	18
179	Advanced drive for low cost permanent magnet synchronous machines used for HEV - a review. , 2012, , .		5
180	An In Situ Efficiency Estimation Technique for Induction Machines Working With Unbalanced Supplies. IEEE Transactions on Energy Conversion, 2012, 27, 85-95.	3.7	40

#	Article	IF	Citations
181	Rotational Core Loss and Permeability Measurements in Machine Laminations with Reference to Permeability Asymmetry. IEEE Transactions on Magnetics, 2012, 48, 1445-1448.	1.2	5
182	Test specimen shape considerations for the measurement of rotational core losses. , 2011, , .		1
183	Design of a novel test fixture to measure rotational core losses in machine laminations. , 2011, , .		6
184	Design and Analysis of an Electromechanical Battery for Rural Electrification in Sub-Saharan Africa. IEEE Transactions on Energy Conversion, 2011, 26, 1198-1209.	3.7	22
185	A Novel Hysteresis Core Loss Model for Magnetic Laminations. IEEE Transactions on Energy Conversion, 2011, 26, 993-999.	3.7	20
186	Advanced testing and modeling of magnetic materials including a new method of core loss separation for electrical machines. , 2011 , , .		4
187	A Methodology to Design Linear Generators for Energy Conversion of Ambient Vibrations. IEEE Transactions on Industry Applications, 2011, 47, 2445-2452.	3.3	12
188	A novel evolutionary based in-situ efficiency estimation technique for induction machines working with unbalanced supplies. , $2011, \ldots$		0
189	A Computer Program for Modeling the Conversion of Organic Waste to Energy. Energies, 2011, 4, 1973-2001.	1.6	6
190	Implementation of Fuel Cell Emulation on DSP and dSPACE Controllers in the Design of Power Electronic Converters. IEEE Transactions on Industry Applications, 2010, 46, 285-294.	3.3	43
191	PEMFC Fault Diagnosis, Modeling, and Mitigation. IEEE Transactions on Industry Applications, 2010, 46, 295-303.	3.3	36
192	Power electronics intensive solutions for integrated urban building renewable energy systems. , 2009, , .		6
193	Magnetic Characteristics and Excess Eddy Current Losses. , 2009, , .		17
194	A case study of PV installation for an urban building in downtown Montreal. , 2009, , .		1
195	Converting food waste to usable energy in the urban environment through anaerobic digestion. , 2009, , .		5
196	New Epstein Frame for Core Loss Measurements at High Frequencies and High Flux Densities., 2008,,.		20
197	PEMFC Fault Diagnosis, Modeling, and Mitigation. , 2008, , .		11
198	Implementation of Fuel Cell Emulation on DSPand dSPACE Controllers in the Design of Power Electronic Converters., 2008,,.		5