Antonio Santos-Silva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1438054/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanical performance of concrete made with aggregates from construction and demolition waste recycling plants. Journal of Cleaner Production, 2015, 99, 59-74.	9.3	331
2	Influence of the pre-saturation of recycled coarse concrete aggregates on concrete properties. Magazine of Concrete Research, 2011, 63, 617-627.	2.0	264
3	Evaluation of the durability of concrete made with crushed glass aggregates. Journal of Cleaner Production, 2013, 41, 7-14.	9.3	255
4	Durability performance of concrete with recycled aggregates from construction and demolition waste plants. Construction and Building Materials, 2015, 77, 357-369.	7.2	246
5	Effect of incorporation of high volume of recycled concrete aggregates and fly ash on the strength and global warming potential of concrete. Journal of Cleaner Production, 2017, 166, 485-502.	9.3	230
6	Water absorption and electrical resistivity of concrete with recycled concrete aggregates and fly ash. Cement and Concrete Composites, 2019, 95, 169-182.	10.7	204
7	Compared environmental and economic impact from cradle to gate of concrete with natural and recycled coarse aggregates. Journal of Cleaner Production, 2017, 162, 529-543.	9.3	177
8	Influence of water-reducing admixtures on the mechanical performance of recycled concrete. Journal of Cleaner Production, 2013, 59, 93-98.	9.3	173
9	Physical–chemical and mineralogical characterization of fine aggregates from construction and demolition waste recycling plants. Journal of Cleaner Production, 2013, 52, 438-445.	9.3	163
10	Incorporation of fine concrete aggregates in mortars. Construction and Building Materials, 2012, 36, 960-968.	7.2	128
11	Influence of recycled aggregates and high contents of fly ash on concrete fresh properties. Cement and Concrete Composites, 2017, 84, 198-213.	10.7	127
12	Using fine recycled concrete aggregate for mortar production. Materials Research, 2014, 17, 168-177.	1.3	120
13	Economic analysis of conventional versus selective demolition—A case study. Resources, Conservation and Recycling, 2011, 55, 382-392.	10.8	110
14	New natural hydraulic lime mortars – Physical and microstructural properties in different curing conditions. Construction and Building Materials, 2014, 54, 378-384.	7.2	110
15	Mechanical and mineralogical properties of natural hydraulic lime-metakaolin mortars in different curing conditions. Construction and Building Materials, 2014, 51, 287-294.	7.2	105
16	Physico-mechanical and performance characterization of mortars incorporating fine glass waste aggregate. Cement and Concrete Composites, 2014, 50, 47-59.	10.7	102
17	Physical and chemical assessment of lime–metakaolin mortars: Influence of binder:aggregate ratio. Cement and Concrete Composites, 2014, 45, 264-271.	10.7	99
18	Comparative evaluation of lime mortars for architectural conservation. Journal of Cultural Heritage, 2008, 9, 338-346.	3.3	95

#	Article	IF	CITATIONS
19	Evolution of the microstructure of lime based mortars and influence on the mechanical behaviour: The role of the aggregates. Construction and Building Materials, 2018, 187, 907-922.	7.2	90
20	Hydration products of lime–metakaolin pastes at ambient temperature with ageing. Thermochimica Acta, 2012, 535, 36-41.	2.7	85
21	Seismic resistance of earth construction in Portugal. Engineering Structures, 2011, 33, 932-941.	5.3	78
22	Use of biomass fly ash for mitigation of alkali-silica reaction of cement mortars. Construction and Building Materials, 2012, 26, 687-693.	7.2	76
23	Earth-based mortars for repair and protection of rammed earth walls. Stabilization with mineral binders and fibers. Journal of Cleaner Production, 2018, 172, 2401-2414.	9.3	75
24	ASR of mortars containing glass. Construction and Building Materials, 2013, 47, 489-495.	7.2	73
25	Production of eco-efficient earth-based plasters: Influence of composition on physical performance and bio-susceptibility. Journal of Cleaner Production, 2017, 167, 55-67.	9.3	73
26	Multi-analytical identification of pigments and pigment mixtures used in 17th century Portuguese azulejos. Journal of the European Ceramic Society, 2012, 32, 37-48.	5.7	68
27	Concrete with recycled aggregates: the Portuguese experimental research. Materials and Structures/Materiaux Et Constructions, 2010, 43, 35-51.	3.1	62
28	Understanding the transport of nanolime consolidants within Maastricht limestone. Journal of Cultural Heritage, 2016, 18, 242-249.	3.3	62
29	Experimental Characterization of an Earth Eco-Efficient Plastering Mortar. Journal of Materials in Civil Engineering, 2016, 28, .	2.9	62
30	Evaluation of the effectiveness and compatibility of nanolime consolidants with improved properties. Construction and Building Materials, 2017, 142, 385-394.	7.2	62
31	Pozzolanic activity of metakaolins by the French standard of the modified Chapelle test: A direct methology. Acta Geodynamica Et Geomaterialia, 2015, , 289-298.	0.5	62
32	Durability of ancient lime mortars in humid environment. Construction and Building Materials, 2014, 66, 606-620.	7.2	61
33	Long-term behavior of lime–metakaolin pastes at ambient temperature and humid curing condition. Applied Clay Science, 2014, 88-89, 49-55.	5.2	60
34	Lime mortars with ceramic wastes: Characterization of components and their influence on the mechanical behaviour. Construction and Building Materials, 2014, 73, 523-534.	7.2	56
35	Hydric Behavior of Earth Materials and the Effects of Their Stabilization with Cement or Lime: Study on Repair Mortars for Historical Rammed Earth Structures. Journal of Materials in Civil Engineering, 2016, 28, .	2.9	54
36	Effect of solvent on nanolime transport within limestone: How to improve in-depth deposition. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 497, 171-181.	4.7	52

#	Article	IF	CITATIONS
37	Methodology for service life prediction of architectural concrete facades. Construction and Building Materials, 2017, 133, 261-274.	7.2	52
38	Assessment of glass fibre reinforced polymer waste reuse as filler in mortars. Journal of Cleaner Production, 2019, 210, 1579-1594.	9.3	52
39	Traditional methods of mortar preparation: The hot lime mix method. Cement and Concrete Composites, 2011, 33, 796-804.	10.7	49
40	Rice husk-earth based composites: A novel bio-based panel for buildings refurbishment. Construction and Building Materials, 2019, 221, 99-108.	7.2	48
41	Microstructure and hardened state properties on pozzolan-containing concrete. Construction and Building Materials, 2017, 140, 374-384.	7.2	45
42	Microstructural Characterization of Concrete Prepared with Recycled Aggregates. Microscopy and Microanalysis, 2013, 19, 1222-1230.	0.4	43
43	Unstabilized Rammed Earth: Characterization of Material Collected from Old Constructions in South Portugal and Comparison to Normative Requirements. International Journal of Architectural Heritage, 2014, 8, 185-212.	3.1	42
44	Mineralogical and chemical characterization of historical mortars from military fortifications in Lisbon harbour (Portugal). Environmental Earth Sciences, 2011, 63, 1641-1650.	2.7	40
45	Influence of red mud addition on rheological behavior and hardened properties of mortars. Construction and Building Materials, 2014, 65, 84-91.	7.2	40
46	Anomalies detection in adhesive wall tiling systems by infrared thermography. Construction and Building Materials, 2017, 148, 419-428.	7.2	40
47	Comparison of mineralogical, mechanical and hygroscopic characteristic of earthen, gypsum and cement-based plasters. Construction and Building Materials, 2020, 254, 119222.	7.2	40
48	Analytical characterization of ancient mortars from the archaeological roman site of Pisões (Beja,) Tj ETQq0 0 0	rgBT /Ove 7.2	rloggk 10 Tf 5
49	Reduction of the cement content in rendering mortars with fine glass aggregates. Journal of Cleaner Production, 2015, 95, 75-88.	9.3	38
50	Electrodialytic removal of tungsten and arsenic from secondary mine resources — Deep eutectic solvents enhancement. Science of the Total Environment, 2020, 710, 136364.	8.0	38
51	Shrinkage and creep performance of concrete with recycled aggregates from CDW plants. Magazine of Concrete Research, 2017, 69, 974-995.	2.0	37
52	Microscopic characterisation of old mortars from the Santa Maria Church in Évora. Materials Characterization, 2009, 60, 610-620.	4.4	36
53	Microstructure of Concrete with Aggregates from Construction and Demolition Waste Recycling Plants. Microscopy and Microanalysis, 2016, 22, 149-167.	0.4	33
54	A Review on Alkali-Silica Reaction Evolution in Recycled Aggregate Concrete. Materials, 2020, 13, 2625.	2.9	32

#	Article	IF	CITATIONS
55	Microstructural Changes of Lime Putty during Aging. Journal of Materials in Civil Engineering, 2013, 25, 1524-1532.	2.9	31
56	Rheological properties and hydration behavior of portland cement mortars containing calcined red mud. Canadian Journal of Civil Engineering, 2013, 40, 557-566.	1.3	31
57	A Multidisciplinary Approach to the Study of Archaeological Mortars from the Town of <i>Ammaia</i> in the Roman Province of Lusitania (Portugal). Archaeometry, 2014, 56, 1-24.	1.3	31
58	Earthen Plasters Based on Illitic Soils from Barrocal Region of Algarve: Contributions for Building Performance and Sustainability. Key Engineering Materials, 0, 678, 64-77.	0.4	31
59	Can an earth plaster be efficient when applied on different masonries?. Journal of Building Engineering, 2019, 23, 314-323.	3.4	31
60	Rammed earth walls repair by earth-based mortars: The adequacy to assess effectiveness. Construction and Building Materials, 2019, 205, 213-231.	7.2	31
61	Earth Plasters: The Influence of Clay Mineralogy in the Plasters' Properties. International Journal of Architectural Heritage, 2020, 14, 948-963.	3.1	30
62	Recycled Aggregates Produced from Construction and Demolition Waste for Structural Concrete: Constituents, Properties and Production. Materials, 2021, 14, 5748.	2.9	29
63	Gypsum coatings in ancient buildings. Construction and Building Materials, 2007, 21, 126-131.	7.2	28
64	Microstructural Characterization of Consolidant Products for Historical Renders: An Innovative Nanostructured Lime Dispersion and a More Traditional Ethyl Silicate Limewater Solution. Microscopy and Microanalysis, 2012, 18, 1181-1189.	0.4	28
65	Effects of hygrothermal, UV and SO2 accelerated ageing on the durability of ETICS in urban environments. Building and Environment, 2021, 204, 108151.	6.9	28
66	Eco-Efficient Earthen Plasters: The Influence of the Addition of Natural Fibers. RILEM Bookseries, 2016, , 315-327.	0.4	26
67	Characterization of Historical Mortars from Alentejo's Religious Buildings. International Journal of Architectural Heritage, 2010, 4, 138-154.	3.1	25
68	Optimization of nanolime solvent for the consolidation of coarse porous limestone. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	2.3	25
69	Assessment of the potential reactivity of granitic rocks — Petrography and expansion tests. Cement and Concrete Research, 2016, 86, 63-77.	11.0	24
70	Studies in ancient gypsum based plasters towards their repair: Physical and mechanical properties. Construction and Building Materials, 2019, 202, 319-331.	7.2	24
71	Studies in ancient gypsum based plasters towards their repair: Mineralogy and microstructure. Construction and Building Materials, 2019, 196, 512-529.	7.2	24
72	Microstructure as a critical factor of cement mortars' behaviour: The effect of aggregates' properties. Cement and Concrete Composites, 2020, 111, 103628.	10.7	24

#	Article	IF	CITATIONS
73	Fine sepiolite addition to air lime-metakaolin mortars. Clay Minerals, 2011, 46, 621-635.	0.6	23
74	Efficacy of iron-based bioproducts as surface biotreatment for earth-based plastering mortars. Journal of Cleaner Production, 2019, 237, 117803.	9.3	23
75	Procedure to determine the impact of the surface film resistance on the hygric properties of composite clay/fibre plasters. Materials and Structures/Materiaux Et Constructions, 2017, 50, 1.	3.1	22
76	Thermal Performance of Concrete with Recycled Aggregates from CDW Plants. Applied Sciences (Switzerland), 2017, 7, 740.	2.5	22
77	Mineralogical and microstructural characterisation of rammed earth and earthen mortars from 12th century Paderne Castle. Journal of Cultural Heritage, 2020, 42, 226-239.	3.3	22
78	Long-term analysis of the physical properties of the mixed recycled aggregate and their effect on the properties of mortars. Construction and Building Materials, 2021, 274, 121796.	7.2	22
79	Evaluation of Pozzolanic Reactivity of Artificial Pozzolans. Materials Science Forum, 2012, 730-732, 433-438.	0.3	21
80	Life Cycle Assessment of Mortars with Incorporation of Industrial Wastes. Fibers, 2019, 7, 59.	4.0	21
81	Overview of mining residues incorporation in construction materials and barriers for full-scale application. Journal of Building Engineering, 2020, 29, 101215.	3.4	21
82	Characterisation of old azulejos setting mortars: A contribution to the conservation of this type of coatings. Construction and Building Materials, 2018, 171, 128-139.	7.2	19
83	Restoration of ancient gypsum-based plasters: Design of compatible materials. Cement and Concrete Composites, 2021, 120, 104014.	10.7	19
84	Freixo palace: Rehabilitation of decorative gypsum plasters. Construction and Building Materials, 2008, 22, 41-49.	7.2	18
85	Anomalies in Wall Renders: Overview of the Main Causes of Degradation. International Journal of Architectural Heritage, 2011, 5, 198-218.	3.1	18
86	Inorganic Nanomaterials for Restoration of Cultural Heritage: Synthesis Approaches towards Nanoconsolidants for Stone and Wall Paintings. ChemSusChem, 2018, 11, 4168-4182.	6.8	17
87	Tensile bond strength of lime-based mortars: The role of the microstructure on their performance assessed by a new non-standard test method. Journal of Building Engineering, 2020, 29, 101136.	3.4	16
88	Traditional and Modern Plasters for Built Heritage: Suitability and Contribution for Passive Relative Humidity Regulation. Heritage, 2021, 4, 2337-2355.	1.9	16
89	Characterisation of Roman Mortars from the Archaeological Site of Tróia (Portugal). Materials Science Forum, 2006, 514-516, 1643-1647.	0.3	15
90	Study of Mural Paintings Using <i>In Situ </i> XRF, Confocal Synchrotron-μ-XRF, μ-XRD, Optical Microscopy, and SEM-EDS—The Case of the Frescoes from Misericordia Church of Odemira. Microscopy and Microanalysis, 2011, 17, 702-709.	0.4	15

#	Article	IF	CITATIONS
91	Effect of temperature on the sorption curves of earthen materials. Materials and Structures/Materiaux Et Constructions, 2017, 50, 1.	3.1	14
92	Vernacular Earthen Buildings from Leiria, Portugal – Material Characterization. International Journal of Architectural Heritage, 2021, 15, 1285-1300.	3.1	14
93	Recycled Aggregate Concrete. , 2019, , 365-418.		14
94	Study of mechanical properties of alkaline earth hydroxide nanoconsolidants for lime mortars. Construction and Building Materials, 2020, 236, 117520.	7.2	14
95	Synthetic zeolite pellets incorporated to air lime–metakaolin mortars: Mechanical properties. Construction and Building Materials, 2014, 69, 243-252.	7.2	13
96	Concrete-Based and Mixed Waste Aggregates in Rendering Mortars. Materials, 2020, 13, 1976.	2.9	12
97	Effect of the source concrete with ASR degradation on the mechanical and physical properties of coarse recycled aggregate. Cement and Concrete Composites, 2020, 111, 103621.	10.7	12
98	Tests and Simulation of the Bond-Slip between Steel and Concrete with Recycled Aggregates from CDW. Buildings, 2021, 11, 40.	3.1	12
99	Durability and Compatibility of Lime-Based Mortars: The Effect of Aggregates. Infrastructures, 2018, 3, 34.	2.8	12
100	Evaporation from Porous Building Materials and Its Cooling Potential. Journal of Materials in Civil Engineering, 2015, 27, .	2.9	11
101	In Situ Characterization of Rammed Earth Wall Renders. International Journal of Architectural Heritage, 2015, 9, 430-442.	3.1	11
102	The effects of DiloCarB as carbonation accelerator on the properties of lime mortars. Materials and Structures/Materiaux Et Constructions, 2018, 51, 1.	3.1	11
103	Eco-efficient earth plasters: The effect of sand grading and additions on fresh and mechanical properties. Journal of Building Engineering, 2021, 33, 101591.	3.4	11
104	Effect of surface biotreatments on construction materials. Construction and Building Materials, 2020, 241, 118019.	7.2	11
105	Characterization of Portuguese Historical Gypsum Mortars: A Comparison between Two Case Studies. Materials Science Forum, 0, 636-637, 1258-1265.	0.3	10
106	Influence of Mineral Additions in the Inhibition of Delayed Ettringite Formation in Cement Based Materials – A Microstructural Characterization. Materials Science Forum, 2010, 636-637, 1272-1279.	0.3	10
107	Scatter of Constitutive Models of the Mechanical Properties of Concrete: Comparison of Major International Codes. Journal of Advanced Concrete Technology, 2019, 17, 102-125.	1.8	10
108	Effect of innovative bioproducts on air lime mortars. Journal of Building Engineering, 2021, 35, 101985.	3.4	10

#	Article	IF	CITATIONS
109	Cement-Bonded Particleboards with Banana Pseudostem Waste: Physical Performance and Bio-Susceptibility. Infrastructures, 2021, 6, 86.	2.8	10
110	Laboratory characterization of relative humidity dependent properties for plasters: A systematic review. Construction and Building Materials, 2021, 304, 124595.	7.2	10
111	Vernacular Caramel´s Adobe Masonry Dwellings – Material Characterization. International Journal of Architectural Heritage, 2022, 16, 67-84.	3.1	10
112	Methodology for the rehabilitation of ancient gypsum plasterwork. Journal of Building Appraisal, 2007, 3, 195-212.	0.4	9
113	Influence of Air Lime type and Curing Conditions on Lime and Lime-Metakaolin Mortars. Building Pathology and Rehabilitation, 2013, , 105-126.	0.2	9
114	Natural or Artificial? Multi-Analytical Study of a Scagliola from Estoi Palace Simulating Imperial Red Porphyry. Microscopy and Microanalysis, 2016, 22, 1281-1303.	0.4	9
115	Properties and Composition of Recycled Aggregates. , 2019, , 89-141.		9
116	A semi-destructive assessment method to estimate the residual strength of maritime pine structural elements degraded by anobiids. Materials and Structures/Materiaux Et Constructions, 2019, 52, 1.	3.1	9
117	Vernacular earthen buildings from Leiria, Portugal – Architectural survey towards their conservation and retrofitting. Journal of Building Engineering, 2021, 35, 102115.	3.4	9
118	Bio-Wastes as Aggregates for Eco-Efficient Boards and Panels: Screening Tests of Physical Properties and Bio-Susceptibility. Infrastructures, 2022, 7, 26.	2.8	9
119	Consolidation and chromatic reintegration of historical renders with lime-based pozzolanic products. Studies in Conservation, 2015, 60, 321-332.	1.1	8
120	Application Protocol for the Consolidation of Calcareous Substrates by the Use of Nanolimes: From Laboratory Research to Practice. Restoration of Buildings and Monuments, 2018, 22, 99-109.	0.6	8
121	In situ evaluation of the behaviour of earth-based mortar renders with low additions of limes. Conservar Patrimonio, 0, 26, 11-21.	0.4	8
122	Environmental Potential of Earth-Based Building Materials: Key Facts and Issues from a Life Cycle Assessment Perspective. RILEM State-of-the-Art Reports, 2022, , 261-296.	0.7	8
123	Studies of the Performance of Nanostructured and other Compatible Consolidation Products for Historical Renders. Materials Science Forum, 0, 730-732, 942-947.	0.3	7
124	Mineralogical and mechanical characterization of rammed earth external renderings of the south of Portugal. Construction and Building Materials, 2019, 225, 1160-1169.	7.2	7
125	Behaviour of Glass in Cement-Based Materials: Its Role on ASR. Materials Science Forum, 2012, 730-732, 415-420.	0.3	6
126	Estudo das reações alcalis-sÃlica associadas ao uso da lama vermelha em argamassas colantes e de revestimento. Ceramica, 2012, 58, 90-98.	0.8	6

#	Article	IF	CITATIONS
127	Stucco Marble in the Portuguese Architecture: Multi-analytical Characterisation. International Journal of Architectural Heritage, 2020, 14, 977-993.	3.1	6
128	20th-Century Award-Winning Buildings in Lisbon (Portugal). Study of Plasters, Rendering, and Concrete Materials Aiming Their Sustainable Preservation. Buildings, 2021, 11, 359.	3.1	6
129	Evaluation of alkali-silica reaction in recycled aggregates: The applicability of the mortar bar test. Construction and Building Materials, 2021, 299, 124250.	7.2	6
130	Recommendation of RILEM TC 258-AAA: RILEM AAR-8: determination of potential releasable alkalis by aggregates in concrete. Materials and Structures/Materiaux Et Constructions, 2021, 54, 1.	3.1	6
131	A Discussion on Winter Indoor Hygrothermal Conditions and Hygroscopic Behaviour of Plasters in Southern Europe. Infrastructures, 2022, 7, 38.	2.8	6
132	Feasibility of Creosote Treatment for Glued-Laminated Pine-Timber Railway Sleepers. Journal of Materials in Civil Engineering, 2015, 27, 04014134.	2.9	5
133	Assessment of the Alteration of Granitic Rocks and its Influence on Alkalis Release. IOP Conference Series: Earth and Environmental Science, 2017, 95, 022001.	0.3	5
134	Microstructural Features of Recycled Aggregate Concrete: From Non-Structural to High-Performance Concrete. Microscopy and Microanalysis, 2019, 25, 601-616.	0.4	5
135	Study of ASR in concrete with recycled aggregates: Influence of aggregate reactivity potential and cement type. Construction and Building Materials, 2020, 265, 120743.	7.2	5
136	Compatible Air Lime Mortars for Historical Tiled Facades: Bond and Mechanical Strength versus Tile–Mortar Interface Microstructure. Journal of Materials in Civil Engineering, 2020, 32, .	2.9	5
137	Effect of Type of Curing and Metakaolin Replacement on Air Lime Mortars for the Durability of Masonries. Infrastructures, 2021, 6, 143.	2.8	5
138	Mortars with CDW Recycled Aggregates Submitted to High Levels of CO2. Infrastructures, 2021, 6, 159.	2.8	5
139	The importance of SEM-EDS analysis in the study of old mortars. Microscopy and Microanalysis, 2008, 14, 57-60.	0.4	4
140	Phase and Microstructural Characterization of Lime-MK Blended Mixes. Materials Science Forum, 2012, 730-732, 135-140.	0.3	4
141	The history of <scp>P</scp> ortuguese interior plaster coatings: A mineralogical survey using <scp>XRD</scp> . Archaeometry, 2015, 57, 147-165.	1.3	4
142	Argamassas de cal e terra: caracterÃsticas e possibilidades de aplicação. Ambiente ConstruÃdo, 2018, 18, 49-62.	0.4	4
143	Eco-efficient earth plasters: influence of clay content, sand particle size and support. Journal of World Architecture, 2018, 2, .	0.1	4
144	Fernandina Wall of Lisbon: Mineralogical and Chemical Characterization of Rammed Earth and Masonry Mortars. Minerals (Basel, Switzerland), 2022, 12, 241.	2.0	4

#	Article	lF	CITATIONS
145	²⁷ Al and ²⁹ Si NMR and XRD characterisation of clinkers: standard phases and new waste based formulations. Advances in Applied Ceramics, 2008, 107, 37-45.	1.1	3
146	Métodos de evaluación de las reacciones álcali-sÃlice en hormigones con áridos reciclados. Revista Ingenieria De Construccion, 2009, 24, .	0.4	3
147	Mortars. , 2019, , 169-208.		3
148	Risk of ASR in coating mortars incorporating glass aggregates and a Portland–limestone cement. European Journal of Environmental and Civil Engineering, 2019, 23, 226-244.	2.1	3
149	Incorporation of Natural Fibres in Rendering Mortars for the Durability of Walls. Infrastructures, 2021, 6, 82.	2.8	3
150	Characterisation of Decorative Portuguese Gypsum Plasters from the Nineteenth and Twentieth Centuries: The Case of the Bolsa Palace in Oporto. RILEM Bookseries, 2012, , 141-151.	0.4	3
151	Characterisation of mortars from the monumental complex of Viana do Alentejo castle. Conservar Patrimonio, 0, 1, 21-32.	0.4	3
152	Preliminary studies of consolidation of wall paintings: synthesis and characterisation of nanolime. Conservar Patrimonio, 0, 23, 103-107.	0.4	3
153	Marmorite - contribution to a proper preservation of a durable wall coating. Conservar Patrimonio, 0, 28, 31-38.	0.4	3
154	Biotreatments Using Microbial Mixed Cultures with Crude Glycerol and Waste Pinewood as Carbon Sources: Influence of Application on the Durability of Recycled Concrete. Materials, 2022, 15, 1181.	2.9	3
155	Characterisation of the Mural Paintings from the <i>Misericordia</i> Church of Odemira (Portugal). Materials Science Forum, 2008, 587-588, 1019-1023.	0.3	2
156	Mitigation of Internal Expansive Reaction: The Role of Tungsten Mine Sludge. Materials Science Forum, 2012, 730-732, 468-473.	0.3	2
157	Historical Heritage: A Study to Conservation. Materials Science Forum, 2012, 730-732, 604-610.	0.3	2
158	Identification of alkali-reactive aggregates: some examples. Proceedings of Institution of Civil Engineers: Construction Materials, 2014, 167, 302-311.	1.1	2
159	Processing of Recycled Aggregates. , 2019, , 57-88.		2
160	Life Cycle Assessment of Mortars Produced Partially Replacing Cement by Treated Mining Residues. Applied Sciences (Switzerland), 2021, 11, 7947.	2.5	2
161	Durability of Earth Materials: Weathering Agents, Testing Procedures and Stabilisation Methods. RILEM State-of-the-Art Reports, 2022, , 211-241.	0.7	2
162	Characterization of Earth Used in Earth Construction Materials. RILEM State-of-the-Art Reports, 2022, , 17-81.	0.7	2

#	Article	IF	CITATIONS
163	Alkali-silica reaction in volcanic rocks: a worldwide comparative approach. Materiales De Construccion, 2022, 72, e278.	0.7	2
164	Optical microscopy analysis of mortars from Tagus River 16th and 17th century fortifications. Microscopy and Microanalysis, 2008, 14, 77-80.	0.4	1
165	Characterization of Deleterious Expansive Reactions in Fagilde Dam. Metallography, Microstructure, and Analysis, 2013, 2, 299-312.	1.0	1
166	Results Comparison of Alkali-Reactivity Tests for Same Aggregates, Using a Kinetic Model. Key Engineering Materials, 2014, 634, 498-505.	0.4	1
167	Fresh Concrete Properties. , 2019, , 181-218.		1
168	Use of Bioproducts Derived from Mixed Microbial Cultures Grown with Crude Glycerol to Protect Recycled Concrete Surfaces. Materials, 2021, 14, 2057.	2.9	1
169	RECYCLING OF ASHES FROM BIOMASS COMBUSTION AS RAW MATERIAL FOR MORTARS. Mix Sustent \tilde{A}_i vel, 2021, 7, 137-146.	0.0	1
170	The Benefits of Eco-efficient Plasters for Occupant's Health—A Case Study. , 2022, , 383-404.		1
171	Diagnosis, Characterisation and Restoration of the Internal Renders of SantÃssimo Sacramento Church in Lisbon. , 2012, , 175-194.		1
172	Use of Mixed Microbial Cultures to Protect Recycled Concrete Surfaces: A Preliminary Study. Materials, 2021, 14, 6545.	2.9	1
173	Monitoring the structural effects of internal swelling reactions in Aguieira bridges. Proceedings of Institution of Civil Engineers: Construction Materials, 0, , 1-38.	1.1	1
174	RILEM TC 258-AAA Round Robin Test: Alkali release from aggregates and petrographic analysis. Critical review of the test method AAR-8. Materiales De Construccion, 2022, 72, e279.	0.7	1
175	Internal Expansive Reactions in Concrete - Prevention of its Occurrence. Materials Science Forum, 0, 587-588, 867-871.	0.3	0
176	The role of SEM in the diagnosis of expansive chemical reactions in cement-based building materials. Microscopy and Microanalysis, 2008, 14, 95-96.	0.4	0
177	The Application of Fluorescence Microscopy and Scanning Electron Microscopy in the Detection of Delayed Ettringite Formation in Concrete. Materials Science Forum, 2010, 636-637, 1266-1271.	0.3	0
178	Alkali-Aggregate Reactions in Concrete: Methodologies Applied in the Evaluation of Alkali Reactivity of Aggregates for Concrete. Materials Science Forum, 2012, 730-732, 409-414.	0.3	0
179	Kinetics Comparison of Alkali-Reactivity Tests for Aggregates. Key Engineering Materials, 0, 634, 506-516.	0.4	0
180	Potential Reactivity to Alkalis of Portuguese Volcanic Aggregates for Concrete. , 2015, , 55-58.		0

#	Article	IF	CITATIONS
181	Volcanic Aggregates from Azores and Madeira Archipelagos (Portugal): An Overview Regarding the Alkali Silica Reactions. IOP Conference Series: Earth and Environmental Science, 2017, 95, 022034.	0.3	0
182	Potentially Reactive Forms of Silica in Volcanic Rocks Using Different Analytical Approaches. IOP Conference Series: Earth and Environmental Science, 2017, 95, 022040.	0.3	0
183	Indoor Air Quality Regulation Through the Usage of Eco-Efficient Plasters. Springer Transactions in Civil and Environmental Engineering, 2019, , 383-394.	0.4	0
184	Bright lights: disclosures from the optical, spectroscopic and chromatographic characterization of a 19th century Portuguese sedan chair. Conservar Patrimonio, 0, 23, 25-34.	0.4	0
185	Caracterização das argamassas da muralha tardo-romana de Olisipo. DigitAR - Revista Digital De Arqueologia Arquitectura E Artes, 2018, , 15-21.	0.0	0
186	Behavior of mortar blended with quartzite residues when subjected to natural aging. Revista Eletrônica Em Gestão Educação E Tecnologia Ambiental, 0, 24, 14.	0.0	0
187	Assessment of natural aging and ecological surface treatments in earth renders. Conservar Patrimonio, 2020, 35, 31-44.	0.4	0
188	Characterisation of stucco marble coatings towards their preservation. Conservar Patrimonio, 0, , .	0.4	0
189	Hygrothermal Behaviour of Air Lime Coatings with Mussel Shell Sand. , 0, , .		0
190	Physical and Mechanical Properties of Reinforced Concrete from 20th-Century Architecture Award-Winning Buildings in Lisbon (Portugal): A Contribution to the Knowledge of Their Evolution and Durability. Construction Materials, 2022, 2, 127-147.	0.9	0