Susana Fiszman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1437589/publications.pdf Version: 2024-02-01

SUSANA FISZMAN

#	Article	IF	CITATIONS
1	Saliva matters: Reviewing the role of saliva in the rheology and tribology of liquid and semisolid foods. Relation to in-mouth perception. Food Hydrocolloids, 2021, 116, 106660.	10.7	19
2	Influence of fading duration on TCATA evaluation. Food Quality and Preference, 2020, 79, 103619.	4.6	7
3	Do Consumers Change Their Perception of Liking, Expected Satiety, and Healthiness of a Product If They Know It Is a Ready-to Eat Meal?. Foods, 2020, 9, 1257.	4.3	10
4	Oral Processing Studies: Why Multidisiciplinary?. Foods, 2020, 9, 875.	4.3	1
5	Are mixed meat and vegetable protein products good alternatives for reducing meat consumption? A case study with burgers. Current Research in Food Science, 2020, 3, 30-40.	5.8	35
6	Emotional response evoked when looking at and trying a new food product, measured through images and words. A case-study with novel fruit and vegetable smoothies. Food Quality and Preference, 2020, 84, 103955.	4.6	10
7	Changing chemical leavening to improve the structural, textural and sensory properties of functional cakes with blackcurrant pomace. LWT - Food Science and Technology, 2020, 127, 109378.	5.2	13
8	Agave fructans as fat and sugar replacers in ice cream: Sensory, thermal and texture properties. Food Hydrocolloids, 2020, 108, 106032.	10.7	18
9	Evaluation of Some Ingredients and Energy Content on Frontâ€ofâ€Pack Cereal Bar Labeling as Drivers of Choice and Perception of Healthiness: A Case Study with Exercisers. Journal of Food Science, 2019, 84, 2269-2277.	3.1	12
10	Potential Impact of Oat Ingredient Type on Oral Fragmentation of Biscuits and Oro-Digestibility of Starch—An In Vitro Approach. Foods, 2019, 8, 148.	4.3	2
11	Impact of texture TDS and flavour TDS tasks and of chocolate-chip biscuit characteristics on oral processing features. Food Quality and Preference, 2019, 76, 109-117.	4.6	12
12	The Role of the Dynamic Sensory Perception in the Reformulation of Shakes: Use of TDS for Studying the Effect of Milk, Fiber, and Flavor Addition. Journal of Food Science, 2018, 83, 198-204.	3.1	3
13	The dynamics of texture perception of hard solid food: A review of the contribution of the temporal dominance of sensations technique. Journal of Texture Studies, 2018, 49, 202-212.	2.5	21
14	Impact of composition and texture of protein-added yogurts on oral activity. Food and Function, 2018, 9, 5443-5454.	4.6	8
15	Recommendations for characterization and reporting of dietary fibers in nutrition research. American Journal of Clinical Nutrition, 2018, 108, 437-444.	4.7	19
16	The role of starch and saliva in tribology studies and the sensory perception of protein-added yogurts. Food and Function, 2017, 8, 545-553.	4.6	53
17	Designing added-protein yogurts: Relationship between inÂvitro digestion behavior and structure. Food Hydrocolloids, 2017, 72, 27-34.	10.7	21
18	A review of the characteristics of dietary fibers relevant to appetite and energy intake outcomes in human intervention trials. American Journal of Clinical Nutrition, 2017, 106, 747-754.	4.7	58

SUSANA FISZMAN

#	Article	IF	CITATIONS
19	Sensory space of battered surimi rings: Key features determined by Flash Profiling. Journal of Sensory Studies, 2017, 32, e12274.	1.6	4
20	Consumer perceptions of indulgence: A case study with cookies. Food Quality and Preference, 2017, 62, 80-89.	4.6	9
21	Expectations of food satiation and satiety reviewed with special focus on food properties. Food and Function, 2017, 8, 2686-2697.	4.6	13
22	Importance of consumer perceptions in fiber-enriched food products. A case study with sponge cakes. Food and Function, 2017, 8, 574-583.	4.6	16
23	Revisiting the role of protein-induced satiation and satiety. Food Hydrocolloids, 2017, 68, 199-210.	10.7	57
24	Development of glucomannan-chitosan interpenetrating hydrocolloid networks (IHNs) as a potential tool for creating satiating ingredients. Food Hydrocolloids, 2016, 60, 533-542.	10.7	10
25	Yogurt viscosity and fruit pieces affect satiating capacity expectations. Food Research International, 2016, 89, 574-581.	6.2	33
26	Editorial overview: Sensory sciences and consumer perception. Current Opinion in Food Science, 2016, 9, v-vi.	8.0	1
27	The Role of Temporal Dominance of Sensations (TDS) in the Generation and Integration of Food Sensations and Cognition. ACS Symposium Series, 2015, , 133-145.	0.5	Ο
28	Consumer perception of carriers of a satiating compound. Influence of front-of-package images and weight loss-related information. Food Research International, 2015, 78, 88-95.	6.2	16
29	Relating dynamic perception of reformulated cheese pies to consumers' expectations of satiating ability. Food Research International, 2015, 78, 369-377.	6.2	10
30	How is an ideal satiating yogurt described? A case study with added-protein yogurts. Food Research International, 2015, 78, 141-147.	6.2	24
31	Yogurts with an increased protein content and physically modified starch: rheological, structural, oral digestion and sensory properties related to enhanced satiating capacity. Food Research International, 2015, 70, 64-73.	6.2	58
32	Methods for a deeper understanding of the sensory perception of fruit fillings. Food Hydrocolloids, 2015, 46, 160-171.	10.7	25
33	Fruit fillings development: A multiparametric approach. LWT - Food Science and Technology, 2015, 61, 564-572.	5.2	15
34	Does food complexity have a role in eliciting expectations of satiating capacity?. Food Research International, 2015, 75, 225-232.	6.2	26
35	Comparison of methods for generating sensory vocabulary with consumers: A case study with two types of satiating foods. Food Quality and Preference, 2015, 44, 111-118.	4.6	10
36	Relating the effects of protein type and content in increased-protein cheese pies to consumers' perception of satiating capacity. Food and Function, 2015, 6, 532-541.	4.6	3

Susana Fiszman

#	Article	IF	CITATIONS
37	Relating HPMC concentration to elicited expected satiation in milk-based desserts. Food Hydrocolloids, 2015, 45, 158-167.	10.7	12
38	Comparison of partial and global projective mapping with consumers: A case study with satiating cheese pies. Food Research International, 2015, 67, 323-330.	6.2	15
39	Influence of Outer Layer Formulation on the Sensory Properties of Microwaved Breaded Nuggets. International Journal of Food Properties, 2014, 17, 829-841.	3.0	14
40	Specific phenolic compounds and sensory properties of a new dealcoholized red wine with pomegranate (<i>Punica granatum</i> L.) extract. Food Science and Technology International, 2014, 20, 421-429.	2.2	10
41	Hydrocolloids as a tool for modulating the expected satiety of milk-based snacks. Food Hydrocolloids, 2014, 39, 51-57.	10.7	27
42	How hydrocolloids affect the temporal oral perception of ice cream. Food Hydrocolloids, 2014, 36, 220-228.	10.7	87
43	Consumers' hedonic expectations and perception of the healthiness of biscuits made with olive oil or sunflower oil. Food Research International, 2014, 55, 197-206.	6.2	36
44	Consumer perceptions of satiating and meal replacement bars, built up from cues in packaging information, health claims and nutritional claims. Food Research International, 2014, 64, 456-464.	6.2	32
45	What is satiating? Consumer perceptions of satiating foods and expected satiety of protein-based meals. Food Research International, 2014, 62, 551-560.	6.2	22
46	Formulating fruit fillings. Freezing and baking stability of a tapioca starch–pectin mixture model. Food Hydrocolloids, 2014, 40, 203-213.	10.7	25
47	Are fish products healthy? Eye tracking as a new food technology tool for a better understanding of consumer perception. LWT - Food Science and Technology, 2014, 55, 459-465.	5.2	27
48	Consumers' perception of symbols and health claims as health-related label messages. A cross-cultural study. Food Research International, 2014, 62, 653-661.	6.2	58
49	The role of gums in satiety/satiation. A review. Food Hydrocolloids, 2013, 32, 147-154.	10.7	72
50	The satiating mechanisms of major food constituents – An aid to rational food design. Trends in Food Science and Technology, 2013, 32, 43-50.	15.1	18
51	Texture and Semantics: The Conceptual Structure in Consumers' Minds. Journal of Sensory Studies, 2013, 28, 194-204.	1.6	13
52	Why buying functional foods? Understanding spending behaviour through structural equation modelling. Food Research International, 2013, 50, 361-368.	6.2	66
53	A new sensory tool to analyse the oral trajectory of biscuits with different fat and fibre contents. Food Research International, 2013, 51, 544-553.	6.2	54
54	Structural equation modelling and word association as tools for a better understanding of low fish consumption. Food Research International, 2013, 52, 56-63.	6.2	45

Susana Fiszman

#	Article	IF	CITATIONS
55	How Does the Science of Physical and Sensory Properties Contribute to Gastronomy and Culinary Art?. Journal of Culinary Science and Technology, 2013, 11, 96-109.	1.4	10
56	Reasons Underlying Low Fish Consumption Where Availability Is Not an Issue. A Case Study in <scp>B</scp> razil, One of the World's Largest Fish Producers. Journal of Sensory Studies, 2013, 28, 205-216.	1.6	16
57	How personality traits and intrinsic personal characteristics influence the consumer's choice of reduced-calorie food. Food Research International, 2012, 49, 792-797.	6.2	20
58	Comparison between temporal dominance of sensations (TDS) and key-attribute sensory profiling for evaluating solid food with contrasting textural layers: Fish sticks. Food Quality and Preference, 2012, 24, 111-118.	4.6	103
59	Packaging information as a modulator of consumers' perception of enriched and reduced-calorie biscuits in tasting and non-tasting tests. Food Quality and Preference, 2012, 25, 105-115.	4.6	77
60	Effects of food package information and sensory characteristics on the perception of healthiness and the acceptability of enriched biscuits. Food Research International, 2012, 48, 209-216.	6.2	89
61	Influence of Nutritional Knowledge on the Use and Interpretation of Spanish Nutritional Food Labels. Journal of Food Science, 2012, 77, H1-8.	3.1	35
62	Overcoming the issues in the sensory description of hot served food with a complex texture. Application of QDA®, flash profiling and projective mapping using panels with different degrees of training. Food Quality and Preference, 2011, 22, 463-473.	4.6	116
63	Food labels: Do consumers perceive what semiotics want to convey?. Food Quality and Preference, 2011, 22, 689-698.	4.6	80
64	MAIN FACTORS UNDERLYING CONSUMERS' FOOD CHOICE: A FIRST STEP FOR THE UNDERSTANDING OF ATTITUDES TOWARD "HEALTHY EATING― Journal of Sensory Studies, 2011, 26, 85-95.	1.6	131
65	Recent approaches using chemical treatments to preserve quality of fresh-cut fruit: A review. Postharvest Biology and Technology, 2010, 57, 139-148.	6.0	317
66	On the assessment of fracture in brittle foods II. Biting or chewing?. Food Research International, 2009, 42, 1468-1474.	6.2	20
67	Texture concepts for consumers: a better understanding of crispy–crunchy sensory perception. European Food Research and Technology, 2008, 226, 1081-1090.	3.3	26
68	Shelf-life estimation of â€~Fuji' apples. Postharvest Biology and Technology, 2008, 50, 64-69.	6.0	20
69	Quantification of fracture properties and microstructural features of roasted Marcona almonds by image analysis. LWT - Food Science and Technology, 2008, 41, 10-17.	5.2	27
70	On the assessment of fracture in brittle foods: The case of roasted almonds. Food Research International, 2008, 41, 544-551.	6.2	41
71	Changes in apple tissue with storage time: Rheological, textural and microstructural analyses. Journal of Food Engineering, 2007, 78, 622-629.	5.2	67
72	Crispness assessment of roasted almonds by an integrated approach to texture description: texture, acoustics, sensory and structure. Journal of Chemometrics, 2006, 20, 311-320.	1.3	112

#	Article	IF	CITATIONS
73	Shelf-life estimation of â€~Fuji' apples: Sensory characteristics and consumer acceptability. Postharvest Biology and Technology, 2005, 38, 18-24.	6.0	56