
Michael Hollmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1437437/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	NMDAR1 autoantibodies amplify behavioral phenotypes of genetic white matter inflammation: a mild encephalitis model with neuropsychiatric relevance. Molecular Psychiatry, 2022, 27, 4974-4983.	4.1	7
2	Multiple inducers and novel roles of autoantibodies against the obligatory NMDAR subunit NR1: a translational study from chronic life stress to brain injury. Molecular Psychiatry, 2021, 26, 2471-2482.	4.1	18
3	Autoantibodies against NMDA receptor 1 modify rather than cause encephalitis. Molecular Psychiatry, 2021, 26, 7746-7759.	4.1	13
4	Tetraspanins as Potential Modulators of Glutamatergic Synaptic Function. Frontiers in Molecular Neuroscience, 2021, 14, 801882.	1.4	9
5	The Mechanism of NMDA Receptor Hyperexcitation in High Pressure Helium and Hyperbaric Oxygen. Frontiers in Physiology, 2020, 11, 1057.	1.3	7
6	GluN2B but Not GluN2A for Basal Dendritic Growth of Cortical Pyramidal Neurons. Frontiers in Neuroanatomy, 2020, 14, 571351.	0.9	14
7	Enhanced mGlu5 Signaling in Excitatory Neurons Promotes Rapid Antidepressant Effects via AMPA Receptor Activation. Neuron, 2019, 104, 338-352.e7.	3.8	55
8	lsomerization of Asp7 in Beta-Amyloid Enhances Inhibition of the α7 Nicotinic Receptor and Promotes Neurotoxicity. Cells, 2019, 8, 771.	1.8	26
9	High Pressure Stress Response: Involvement of NMDA Receptor Subtypes and Molecular Markers. Frontiers in Physiology, 2019, 10, 1234.	1.3	7
10	Autoantibodies Against NMDA Receptors– Janus-Faced Molecules?. Neuroforum, 2019, 25, 89-98.	0.2	0
11	A common mechanism allows selective targeting of GluN2B subunit-containing N-methyl-D-aspartate receptors. Communications Biology, 2019, 2, 420.	2.0	24
12	Development of Cortical Pyramidal Cell and Interneuronal Dendrites: a Role for Kainate Receptor Subunits and NETO1. Molecular Neurobiology, 2019, 56, 4960-4979.	1.9	26
13	Uncoupling the widespread occurrence of anti-NMDAR1 autoantibodies from neuropsychiatric disease in a novel autoimmune model. Molecular Psychiatry, 2019, 24, 1489-1501.	4.1	63
14	Location and functions of Inebriated in the Drosophila eye. Biology Open, 2018, 7, .	0.6	0
15	The siRNA-mediated knockdown of GluN3A in 46C-derived neural stem cells affects mRNA expression levels of neural genes, including known iGluR interactors. PLoS ONE, 2018, 13, e0192242.	1.1	0
16	Optical control of AMPA receptors using a photoswitchable quinoxaline-2,3-dione antagonist. Chemical Science, 2017, 8, 611-615.	3.7	42
17	Calcium imaging with genetically encoded sensor Case12: Facile analysis of α7/α9 nAChR mutants. PLoS ONE, 2017, 12, e0181936.	1.1	13
18	The Enigma of the Dichotomic Pressure Response of GluN1-4a/b Splice Variants of NMDA Receptor: Experimental and Statistical Analyses. Frontiers in Molecular Neuroscience, 2016, 9, 40.	1.4	10

#	Article	IF	CITATIONS
19	The N â€methylâ€Dâ€aspartate receptor's neglected subunit – GluN1 matters under normal and hyperbaric conditions. European Journal of Neuroscience, 2015, 42, 2577-2584.	1.2	17
20	GluA2 is rapidly edited at the Q/R site during neural differentiation in vitro. Frontiers in Cellular Neuroscience, 2015, 9, 69.	1.8	27
21	NDRG2 phosphorylation provides negative feedback for SGK1-dependent regulation of a kainate receptor in astrocytes. Frontiers in Cellular Neuroscience, 2015, 9, 387.	1.8	13
22	Optical control of NMDA receptors with a diffusible photoswitch. Nature Communications, 2015, 6, 8076.	5.8	76
23	Trafficking of Kainate Receptors. Membranes, 2014, 4, 565-595.	1.4	33
24	Auxiliary Subunits: Shepherding AMPA Receptors to the Plasma Membrane. Membranes, 2014, 4, 469-490.	1.4	59
25	Type I TARPs promote dendritic growth of early postnatal neocortical pyramidal cells in organotypic cultures. Development (Cambridge), 2014, 141, 1737-1748.	1.2	27
26	Structural basis of PI(4,5)P2-dependent regulation of GluA1 by phosphatidylinositol-5-phosphate 4-kinase, type II, alpha (PIP5K2A). Pflugers Archiv European Journal of Physiology, 2014, 466, 1885-1897.	1.3	15
27	Autoantibodies to Glutamate Receptor Antigens in Multiple Sclerosis and Rasmussen's Encephalitis. NeuroImmunoModulation, 2014, 21, 189-194.	0.9	5
28	A Plant Homolog of Animal Glutamate Receptors Is an Ion Channel Gated by Multiple Hydrophobic Amino Acids. Science Signaling, 2013, 6, ra47.	1.6	92
29	The delta subfamily of glutamate receptors: characterization of receptor chimeras and mutants. European Journal of Neuroscience, 2013, 37, 1620-1630.	1.2	31
30	Undifferentiated embryonic stem cells express ionotropic glutamate receptor mRNAs. Frontiers in Cellular Neuroscience, 2013, 7, 241.	1.8	4
31	Systematics and phylogenetic species delimitation within Polinices s.l. (Caenogastropoda: Naticidae) based on molecular data and shell morphology. Organisms Diversity and Evolution, 2012, 12, 349-375.	0.7	8
32	GluN3 subunit-containing NMDA receptors: not just one-trick ponies. Trends in Neurosciences, 2012, 35, 240-249.	4.2	101
33	Plasticity in D1-Like Receptor Expression Is Associated with Different Components of Cognitive Processes. PLoS ONE, 2012, 7, e36484.	1.1	21
34	Pressure-selective modulation of NMDA receptor subtypes may reflect 3D structural differences. Frontiers in Cellular Neuroscience, 2012, 6, 37.	1.8	15
35	Identification of a Novel Signaling Pathway and Its Relevance for GluA1 Recycling. PLoS ONE, 2012, 7, e33889.	1.1	30
36	Cell class-specific regulation of neocortical dendrite and spine growth by AMPA receptor splice and editing variants. Development (Cambridge), 2011, 138, 4301-4313.	1.2	49

#	Article	IF	CITATIONS
37	Residues at the tip of the pore loop of NR3B-containing NMDA receptors determine Ca2+ permeability and Mg2+block. BMC Neuroscience, 2010, 11, 133.	0.8	10
38	Oligomerization in the endoplasmic reticulum and intracellular trafficking of kainate receptors are subunitâ€dependent but not editingâ€dependent. Journal of Neurochemistry, 2010, 113, 1403-1415.	2.1	9
39	The Transmembrane Domain C of AMPA Receptors is Critically Involved in Receptor Function and Modulation. Frontiers in Molecular Neuroscience, 2010, 3, 117.	1.4	12
40	Expression of NMDA Receptors and Ca ²⁺ -Impermeable AMPA Receptors Requires Neuronal Differentiation and Allows Discrimination Between Two Different Types of Neural Stem Cells. Cellular Physiology and Biochemistry, 2010, 26, 935-946.	1.1	15
41	Bridging the Synaptic Cleft: Lessons from Orphan Glutamate Receptors. Science Signaling, 2010, 3, pe28.	1.6	8
42	The C-terminal domains of TARPs: Unexpectedly versatile domains. Channels, 2010, 4, 155-158.	1.5	5
43	Functional excitatory GABAA receptors precede ionotropic glutamate receptors in radial glia-like neural stem cells. Molecular and Cellular Neurosciences, 2010, 43, 209-221.	1.0	13
44	Cave Canalem: How endogenous ion channels may interfere with heterologous expression in Xenopus oocytes. Methods, 2010, 51, 66-74.	1.9	37
45	Functional Complementation of Glra1spd-ot, a Glycine Receptor Subunit Mutant, by Independently Expressed C-Terminal Domains. Journal of Neuroscience, 2009, 29, 2440-2452.	1.7	25
46	The glutamate receptor subunit delta2 is capable of gating its intrinsic ion channel as revealed by ligand binding domain transplantation. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 10320-10325.	3.3	36
47	C-terminal Domains of Transmembrane α-Amino-3-hydroxy-5-methyl-4-isoxazole Propionate (AMPA) Receptor Regulatory Proteins Not Only Facilitate Trafficking but Are Major Modulators of AMPA Receptor Function. Journal of Biological Chemistry, 2009, 284, 32413-32424.	1.6	17
48	Effects of NR1 splicing on NR1/NR3B-type excitatory glycine receptors. BMC Neuroscience, 2009, 10, 32.	0.8	16
49	Molecular and functional characterization of Xenopus laevis N-methyl-d-aspartate receptors. Molecular and Cellular Neurosciences, 2009, 42, 116-127.	1.0	7
50	Xenopus laevis Oocytes Endogenously Express All Subunits of the Ionotropic Glutamate Receptor Family. Journal of Molecular Biology, 2009, 390, 182-195.	2.0	18
51	To Gate or not to Gate: Are the Delta Subunits in the Glutamate Receptor Family Functional Ion Channels?. Molecular Neurobiology, 2008, 37, 126-141.	1.9	45
52	Shuffling the Deck Anew: How NR3 Tweaks NMDA Receptor Function. Molecular Neurobiology, 2008, 38, 16-26.	1.9	83
53	Different structural requirements for functional ion pore transplantation suggest different gating mechanisms of NMDA and kainate receptors. Journal of Neurochemistry, 2008, 107, 453-465.	2.1	9
54	Apparent Homomeric NR1 Currents Observed in Xenopus Oocytes are Caused by an Endogenous NR2 Subunit. Journal of Molecular Biology, 2008, 376, 658-670.	2.0	18

#	Article	IF	CITATIONS
55	Arabidopsis thaliana Glutamate Receptor Ion Channel Function Demonstrated by Ion Pore Transplantation. Journal of Molecular Biology, 2008, 383, 36-48.	2.0	92
56	Role of GluR1 in Activity-Dependent Motor System Development. Journal of Neuroscience, 2008, 28, 9953-9968.	1.7	26
57	Electrophysiological Properties of AMPA Receptors Are Differentially Modulated Depending on the Associated Member of the TARP Family. Journal of Neuroscience, 2007, 27, 3780-3789.	1.7	77
58	The Transmembrane AMPA Receptor Regulatory Protein γ4 Is a More Effective Modulator of AMPA Receptor Function than Stargazin (γ2). Journal of Neuroscience, 2007, 27, 8442-8447.	1.7	49
59	Stargazin Interaction with α-Amino-3-hydroxy-5-methyl-4-isoxazole Propionate (AMPA) Receptors Is Critically Dependent on the Amino Acid at the Narrow Constriction of the Ion Channel. Journal of Biological Chemistry, 2007, 282, 18758-18766.	1.6	21
60	A Domain Linking the AMPA Receptor Agonist Binding Site to the Ion Pore Controls Gating and Causes <i>lurcher</i> Properties when Mutated. Journal of Neuroscience, 2007, 27, 12230-12241.	1.7	29
61	Novel Conantokins from Conus parius Venom Are Specific Antagonists of N-Methyl-D-aspartate Receptors. Journal of Biological Chemistry, 2007, 282, 36905-36913.	1.6	42
62	Quantitative analysis of cotransfection efficiencies in studies of ionotropic glutamate receptor complexes. Journal of Neuroscience Research, 2007, 85, 99-115.	1.3	11
63	Bi-directional control of motor neuron dendrite remodeling by the calcium permeability of AMPA receptors. Molecular and Cellular Neurosciences, 2006, 32, 299-314.	1.0	18
64	Investigation via ion pore transplantation of the putative relationship between glutamate receptors and K+ channels. Molecular and Cellular Neurosciences, 2006, 33, 358-370.	1.0	13
65	Ion pore properties of ionotropic glutamate receptors are modulated by a transplanted potassium channel selectivity filter. Molecular and Cellular Neurosciences, 2006, 33, 335-343.	1.0	7
66	Revisiting the Postulated "Unitary Glutamate Receptor― Electrophysiological and Pharmacological Analysis in Two Heterologous Expression Systems Fails to Detect Evidence for Its Existence. Molecular Pharmacology, 2006, 69, 119-129.	1.0	15
67	Functional Significance of the Kainate Receptor GluR6(M836I) Mutation that is Linked to Autism. Cellular Physiology and Biochemistry, 2006, 18, 287-294.	1.1	31
68	Regulation of GluR1 abundance in murine hippocampal neurones by serum- and glucocorticoid-inducible kinase 3. Journal of Physiology, 2005, 565, 381-390.	1.3	32
69	Glucocorticoid adrenal steroids and glucocorticoid-inducible kinase isoforms in the regulation of GluR6 expression. Journal of Physiology, 2005, 565, 391-401.	1.3	38
70	Functional Analysis of Caenorhabditis elegans Glutamate Receptor Subunits by Domain Transplantation. Journal of Biological Chemistry, 2003, 278, 44691-44701.	1.6	15
71	Kainate-binding Proteins Are Rendered Functional Ion Channels upon Transplantation of Two Short Pore-flanking Domains from a Kainate Receptor. Journal of Biological Chemistry, 2002, 277, 48035-48042.	1.6	9
72	Inhibition by Lectins of Glutamate Receptor Desensitization Is Determined by the Lectin's Sugar Specificity at Kainate But Not AMPA Receptors. Molecular and Cellular Neurosciences, 2002, 21, 521-533.	1.0	13

#	Article	IF	CITATIONS
73	The AMPA Receptor Subunit GluR1 Regulates Dendritic Architecture of Motor Neurons. Journal of Neuroscience, 2002, 22, 8042-8051.	1.7	73
74	Identification of Domains and Amino Acids Involved in GluR7 Ion Channel Function. Journal of Neuroscience, 2001, 21, 401-411.	1.7	15
75	The Identity of Plant Glutamate Receptors. Science, 2001, 292, 1486b-1487.	6.0	175
76	Mutant Cycle Analysis of the Active and Desensitized States of an AMPA Receptor Induced by Willardiines. Biochemistry, 2000, 39, 12819-12827.	1.2	9
77	Lectin-Induced Inhibition of Desensitization of the Kainate Receptor GluR6 Depends on the Activation State and Can Be Mediated by a Single Native or Ectopic N-Linked Carbohydrate Side Chain. Journal of Neuroscience, 1999, 19, 916-927.	1.7	57
78	Investigation by ion channel domain transplantation of rat glutamate receptor subunits, orphan receptors and a putative NMDA receptor subunit. European Journal of Neuroscience, 1999, 11, 1765-1778.	1.2	50
79	A desensitization-inhibiting mutation in the glutamate binding site of rat α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor subunits is dominant in heteromultimeric complexes. Neuroscience Letters, 1999, 277, 161-164.	1.0	9
80	<i>N</i> -Glycosylation Is Not a Prerequisite for Glutamate Receptor Function but Is Essential for Lectin Modulation. Molecular Pharmacology, 1997, 52, 861-873.	1.0	111
81	Kainate Binding Proteins Possess Functional Ion Channel Domains. Journal of Neuroscience, 1997, 17, 7634-7643.	1.7	61
82	Cloned Glutamate Receptors. Annual Review of Neuroscience, 1994, 17, 31-108.	5.0	3,813
83	N-glycosylation site tagging suggests a three transmembrane domain topology for the glutamate receptor GluR1. Neuron, 1994, 13, 1331-1343.	3.8	424
84	Cloning of a novel glutamate receptor subunit, GluR5: Expression in the nervous system during development. Neuron, 1990, 5, 583-595.	3.8	620
85	Glutamate Transport and Not Glutamate Receptor Binding Is Stimulated by Gangliosides in a Ca2+-Dependent Manner in Rat Brain Synaptic Plasma Membranes. Journal of Neurochemistry, 1989, 53, 716-723.	2.1	14
86	Cloning by functional expression of a member of the glutamate receptor family. Nature, 1989, 342, 643-648.	13.7	994