Sabato Fusco

List of Publications by Citations

Source: https://exaly.com/author-pdf/1436983/sabato-fusco-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

42 1,223 20 34 g-index

46 1,479 6 avg, IF L-index

#	Paper	IF	Citations
42	Perspectives on: PEO-PPO-PEO Triblock Copolymers and their Biomedical Applications. <i>Journal of Bioactive and Compatible Polymers</i> , 2006 , 21, 149-164	2	126
41	Ribonuclease/angiogenin inhibitor 1 regulates stress-induced subcellular localization of angiogenin to control growth and survival. <i>Journal of Cell Science</i> , 2013 , 126, 4308-19	5.3	76
40	Shuttle-mediated nanoparticle delivery to the blood-brain barrier. <i>Small</i> , 2013 , 9, 853-62	11	76
39	Reprogramming normal cells into tumour precursors requires ECM stiffness and oncogene-mediated changes of cell mechanical properties. <i>Nature Materials</i> , 2020 , 19, 797-806	27	70
38	Transport across the cell-membrane dictates nanoparticle fate and toxicity: a new paradigm in nanotoxicology. <i>Nanoscale</i> , 2014 , 6, 10264-73	7.7	66
37	Effect of serum proteins on polystyrene nanoparticle uptake and intracellular trafficking in endothelial cells. <i>Journal of Nanoparticle Research</i> , 2011 , 13, 4295-4309	2.3	63
36	Injectable thermally responsive mucoadhesive gel for sustained protein delivery. Biomacromolecules, 2011, 12, 28-33	6.9	59
35	Structural and mechanical properties of UV-photo-cross-linked poly(N-vinyl-2-pyrrolidone) hydrogels. <i>Biomacromolecules</i> , 2008 , 9, 231-40	6.9	58
34	Crosstalk between focal adhesions and material mechanical properties governs cell mechanics and functions. <i>Acta Biomaterialia</i> , 2015 , 23, 63-71	10.8	53
33	Viscosity measurements on micron-size scale using optical tweezers. <i>Review of Scientific Instruments</i> , 2005 , 76, 115105	1.7	53
32	Biocompatibility, uptake and endocytosis pathways of polystyrene nanoparticles in primary human renal epithelial cells. <i>Journal of Biotechnology</i> , 2015 , 193, 3-10	3.7	49
31	Energy independent uptake and release of polystyrene nanoparticles in primary mammalian cell cultures. <i>Experimental Cell Research</i> , 2015 , 330, 240-247	4.2	47
30	Particle tracking by full-field complex wavefront subtraction in digital holography microscopy. <i>Lab on A Chip</i> , 2014 , 14, 1129-34	7.2	46
29	Cell mechanosensing is regulated by substrate strain energy rather than stiffness. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 22004-22013	11.5	35
28	3D is not enough: Building up a cell instructive microenvironment for tumoral stroma microtissues. <i>Acta Biomaterialia</i> , 2017 , 47, 1-13	10.8	32
27	Combination therapy for the treatment of pancreatic cancer through hyaluronic acid-decorated nanoparticles loaded with quercetin and gemcitabine: A preliminary in vitro study. <i>Journal of Cellular Physiology</i> , 2019 , 234, 4959-4969	7	31
26	New insights into the mechanisms of the interactions between doxorubicin and the ion-exchange hydrogel DC Beadlfor use in transarterial chemoembolization (TACE). <i>Journal of Biomaterials Science, Polymer Edition</i> , 2012 , 23, 333-54	3.5	30

(2021-2013)

beads: mathematical modeling and experimental verification. <i>Journal of Materials Science: Materials in Medicine</i> , 2013 , 24, 2359-70	4.5	29
Ligand engagement on material surfaces is discriminated by cell mechanosensoring. <i>Biomaterials</i> , 2015 , 45, 72-80	15.6	29
Polystyrene nanoparticles affect Xenopus laevis development. <i>Journal of Nanoparticle Research</i> , 2015 , 17, 1	2.3	26
Y-box Binding Protein-1 Is Part of a Complex Molecular Network Linking Np63#to the PI3K/akt Pathway in Cutaneous Squamous Cell Carcinoma. <i>Journal of Cellular Physiology</i> , 2015 , 230, 2067-74	7	17
Mechanical phenotyping of cells and extracellular matrix as grade and stage markers of lung tumor tissues. <i>Acta Biomaterialia</i> , 2017 , 57, 334-341	10.8	16
High frequency viscoelastic behaviour of low molecular weight hyaluronic acid water solutions. <i>Biorheology</i> , 2007 , 44, 403-18	1.7	15
TraceME: Traceability Management in Eclipse 2012,		13
Stimuli-responsive chitosan/poly (N-isopropylacrylamide) semi-interpenetrating polymer networks: effect of pH and temperature on their rheological and swelling properties. <i>Journal of Materials Science: Materials in Medicine</i> , 2016 , 27, 109	4.5	13
ECM Mechano-Sensing Regulates Cytoskeleton Assembly and Receptor-Mediated Endocytosis of Nanoparticles. <i>ACS Biomaterials Science and Engineering</i> , 2017 , 3, 1586-1594	5.5	12
Mechanosensing of substrate stiffness regulates focal adhesions dynamics in cell. <i>Meccanica</i> , 2017 , 52, 3389-3398	2.1	11
Surface decoration with gH625-membranotropic peptides as a method to escape the endo-lysosomal compartment and reduce nanoparticle toxicity. <i>Nanotechnology</i> , 2015 , 26, 415101	3.4	11
Investigation on specific solutions of GerchbergBaxton algorithm. <i>Optics and Lasers in Engineering</i> , 2014 , 52, 206-211	4.6	11
X-rays effects on cytoskeleton mechanics of healthy and tumor cells. <i>Cytoskeleton</i> , 2017 , 74, 40-52	2.4	11
Drug micro-carriers with a hyaluronic acid corona toward a diffusion-limited aggregation within the vitreous body. <i>Carbohydrate Polymers</i> , 2019 , 220, 185-190	10.3	9
Nanomechanics of a fibroblast suspended using point-like anchors reveal cytoskeleton formation. <i>RSC Advances</i> , 2016 , 6, 24245-24249	3.7	9
X-RAY IRRADIATION AFFECTS MORPHOLOGY, PROLIFERATION AND MIGRATION RATE OF HEALTHY AND CANCER CELLS. <i>Journal of Mechanics in Medicine and Biology</i> , 2015 , 15, 1540022	0.7	6
Preliminary studies on noncovalent hyperbranched polymers based on PNA and DNA building blocks. <i>Journal of Peptide Science</i> , 2009 , 15, 647-53	2.1	4
Morphological and Rheological Guided Design for the Microencapsulation Process of in Calcium Alginate Microspheres. <i>Frontiers in Bioengineering and Biotechnology</i> , 2021 , 9, 660691	5.8	3
	beads: mathematical modeling and experimental verification. <i>Journal of Materials Science: Materials in Medicine</i> , 2013, 24, 2359-70 Polystyrene nanoparticles affect Xenopus laevis development. <i>Journal of Nanoparticle Research</i> , 2015, 45, 72-80 Polystyrene nanoparticles affect Xenopus laevis development. <i>Journal of Nanoparticle Research</i> , 2015, 17, 1 Y-box Binding Protein-1 Is Part of a Complex Molecular Network Linking Bp63ito the PI3K/akt Pathway in Cutaneous Squamous Cell Carcinoma. <i>Journal of Cellular Physiology</i> , 2015, 230, 2067-74 Mechanical phenotyping of cells and extracellular matrix as grade and stage markers of lung tumor tissues. <i>Acta Biomaterialia</i> , 2017, 57, 334-341 High frequency viscoelastic behaviour of low molecular weight hyaluronic acid water solutions. <i>Biorheology</i> , 2007, 44, 403-18 TraceME: Traceability Management in Eclipse 2012, Stimuli-responsive chitosan/poly (N-isopropylacrylamide) semi-interpenetrating polymer networks: effect of pH and temperature on their rheological and swelling properties. <i>Journal of Materials Science: Materials in Medicine</i> , 2016, 27, 109 ECM Mechano-Sensing Regulates Cytoskeleton Assembly and Receptor-Mediated Endocytosis of Nanoparticles. <i>Act Biomaterials Science and Engineering</i> , 2017, 3, 1586-1594 Mechanosensing of substrate stiffness regulates focal adhesions dynamics in cell. <i>Meccanica</i> , 2017, 52, 3389-3398 Surface decoration with gH625-membranotropic peptides as a method to escape the endo-lysosomal compartment and reduce nanoparticle toxicity. <i>Nanotechnology</i> , 2015, 26, 415101 Investigation on specific solutions of GerchbergBaxton algorithm. <i>Optics and Lasers in Engineering</i> , 2014, 52, 206-211 X-rays effects on cytoskeleton mechanics of healthy and tumor cells. <i>Cytoskeleton</i> , 2017, 74, 40-52 Drug micro-carriers with a hyaluronic acid corona toward a diffusion-limited aggregation within the vitreous body. <i>Carbohydrate Polymers</i> , 2019, 220, 185-190 Nanomechanics of a fibroblast suspended using point-like anchors reveal cytoskeleto	beads: mathematical modeling and experimental verification. Journal of Materials Science: Materials in Medicine, 2013, 24, 2359-70 Ligand engagement on material surfaces is discriminated by cell mechanosensoring. Biomaterials, 2015, 45, 72-80 Polystyrene nanoparticles affect Xenopus laevis development. Journal of Nanoparticle Research, 2015, 17, 1 Y-box Binding Protein-1 Is Part of a Complex Molecular Network Linking Rp63Ro the PI3K/akt Pathway in Cutaneous Squamous Cell Carcinoma. Journal of Cellular Physiology, 2015, 230, 2067-74 Mechanical phenotyping of cells and extracellular matrix as grade and stage markers of lung tumor tissues. Acta Biomaterialia, 2017, 57, 334-341 High Frequency viscoelastic behaviour of low molecular weight hysluronic acid water solutions. Biotheology, 2007, 44, 403-18 TraceME: Traceability Management in Eclipse 2012, Stimuli-responsive chitosan/poly (N-isopropylacrylamide) semi-interpenetrating polymer networks: effect of pH and temperature on their rheological and swelling properties. Journal of Materials Science: Materials in Medicine, 2016, 27, 109 ECM Mechano-Sensing Regulates Cytoskeleton Assembly and Receptor-Mediated Endocytosis of Nanoparticles. ACS Biomaterials Science and Engineering, 2017, 3, 1586-1594 Mechanosensing of substrate stiffness regulates focal adhesions dynamics in cell. Meccanica, 2017, 2, 1389-3398 Mechanosensing of substrate stiffness regulates focal adhesions dynamics in cell. Meccanica, 2017, 2, 23389-3398 Surface decoration with gH625-membranotropic peptides as a method to escape the endo-lysosomal compartment and reduce nanoparticle toxicity. Nanotechnology, 2015, 26, 415101 Investigation on specific solutions of GerchbergBaxton algorithm. Optics and Lasers in Engineering, 2014, 52, 206-211 X-rays effects on cytoskeleton mechanics of healthy and tumor cells. Cytoskeleton, 2017, 74, 40-52 24 Drug micro-carriers with a hyaluronic acid corona toward a diffrusion-limited aggregation within the vitreous body. Carbohydrate Polymers, 2019, 220,

7	Drug Delivery: Shuttle-Mediated Nanoparticle Delivery to the Blood B rain Barrier (Small 6/2013). <i>Small</i> , 2013 , 9, 806-806	11	2	
6	A BIOPHYSICAL ANALYSIS TO ASSESS X-RAY SENSITIVITY OF HEALTHY AND TUMOUR CELLS. <i>Radiation Protection Dosimetry</i> , 2019 , 183, 116-120	0.9	1	
5	Adhesion and Migration Response to Radiation Therapy of Mammary Epithelial and Adenocarcinoma Cells Interacting with Different Stiffness Substrates. <i>Cancers</i> , 2020 , 12,	6.6	1	
4	Investigation on cytoskeleton dynamics for non-adherent cells under point-like stimuli 2015,		1	
3	Toxic effects of SiONPs in early embryogenesis of Xenopuslaevis Chemosphere, 2021 , 289, 133233	8.4	1	
2	ECM Mechanoregulation in Malignant Pleural Mesothelioma Frontiers in Bioengineering and Biotechnology, 2022 , 10, 797900	5.8	O	
1	Micro and Macro Characterization of PEO-PPO-PEO Triblocks Hydrogels. <i>Macromolecular Symposia</i> , 2008 , 266, 92-95	0.8		