Yu Chen

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1436943/yu-chen-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

48 8,392 36 49 g-index

49 g-index

49 ext. papers ext. citations 15.1 avg, IF L-index

#	Paper	IF	Citations
48	Degradable mesoporous semimetal antimony nanospheres for near-infrared II multimodal theranostics <i>Nature Communications</i> , 2022 , 13, 539	17.4	3
47	High-performance electronics and optoelectronics of monolayer tungsten diselenide full film from pre-seeding strategy. <i>Informal</i> Materilly, 2021 , 3, 1455	23.1	7
46	Two-dimensional biomaterials: material science, biological effect and biomedical engineering applications. <i>Chemical Society Reviews</i> , 2021 , 50, 11381-11485	58.5	23
45	Epitaxial Synthesis of Monolayer PtSe Single Crystal on MoSe with Strong Interlayer Coupling. <i>ACS Nano</i> , 2019 , 13, 10929-10938	16.7	45
44	Large-Area Atomic Layers of the Charge-Density-Wave Conductor TiSe. <i>Advanced Materials</i> , 2018 , 30, 1704382	24	43
43	The Advanced Designs of High-Performance Platinum-Based Electrocatalysts: Recent Progresses and Challenges. <i>Advanced Materials Interfaces</i> , 2018 , 5, 1800486	4.6	35
42	Research advances in unsupported Pt-based catalysts for electrochemical methanol oxidation. <i>Journal of Energy Chemistry</i> , 2017 , 26, 1067-1076	12	124
41	Room-temperature 2D semiconductor activated vertical-cavity surface-emitting lasers. <i>Nature Communications</i> , 2017 , 8, 543	17.4	74
40	High-quality monolayer superconductor NbSe grown by chemical vapour deposition. <i>Nature Communications</i> , 2017 , 8, 394	17.4	199
39	Wang et⊡al. Reply. <i>Physical Review Letters</i> , 2016 , 117, 219702	7.4	1
38	Van der Waals stacked 2D layered materials for optoelectronics. 2D Materials, 2016 , 3, 022001	5.9	161
37	Metal-organic framework templated synthesis of ultrathin, well-aligned metallic nanowires. <i>ACS Nano</i> , 2015 , 9, 3044-9	16.7	54
36	High Gain Submicrometer Optical Amplifier at Near-Infrared Communication Band. <i>Physical Review Letters</i> , 2015 , 115, 027403	7.4	38
35	Electric-field-induced strong enhancement of electroluminescence in multilayer molybdenum disulfide. <i>Nature Communications</i> , 2015 , 6, 7509	17.4	104
34	Large area growth and electrical properties of p-type WSe2 atomic layers. <i>Nano Letters</i> , 2015 , 15, 709-1	1 3 11.5	287
33	Broadband and enhanced nonlinear optical response of MoS2/graphene nanocomposites for ultrafast photonics applications. <i>Scientific Reports</i> , 2015 , 5, 16372	4.9	147
32	ELECTROCHEMISTRY. High-performance transition metal-doped PtNi octahedra for oxygen reduction reaction. <i>Science</i> , 2015 , 348, 1230-4	33.3	1307

31	Chemical vapor deposition growth of monolayer MoSe2 nanosheets. <i>Nano Research</i> , 2014 , 7, 511-517	10	285
30	Solution processable colloidal nanoplates as building blocks for high-performance electronic thin films on flexible substrates. <i>Nano Letters</i> , 2014 , 14, 6547-53	11.5	60
29	A rational design of carbon-supported dispersive Pt-based octahedra as efficient oxygen reduction reaction catalysts. <i>Energy and Environmental Science</i> , 2014 , 7, 2957-2962	35.4	147
28	High density catalytic hot spots in ultrafine wavy nanowires. <i>Nano Letters</i> , 2014 , 14, 3887-94	11.5	93
27	Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. <i>Nature Nanotechnology</i> , 2014 , 9, 1024-30	28.7	858
26	Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p-n diodes. <i>Nano Letters</i> , 2014 , 14, 5590-7	11.5	782
25	Few-layer molybdenum disulfide transistors and circuits for high-speed flexible electronics. <i>Nature Communications</i> , 2014 , 5, 5143	17.4	329
24	Nanoscale Joule heating and electromigration enhanced ripening of silver nanowire contacts. <i>ACS Nano</i> , 2014 , 8, 2804-11	16.7	251
23	A rational design of cosolvent exfoliation of layered materials by directly probing liquid-solid interaction. <i>Nature Communications</i> , 2013 , 4, 2213	17.4	204
22	Gold clusters alloyed to nanoporous palladium surfaces as highly active bimetallic oxidation catalysts. <i>ChemSusChem</i> , 2013 , 6, 1868-72	8.3	2
	Biomimetic synthesis of an ultrathin platinum nanowire network with a high twin density for		
21	enhanced electrocatalytic activity and durability. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 12577-81	16.4	164
20		16.4	16457
	52, 12577-81 Monodisperse Cu@PtCu nanocrystals and their conversion into hollow-PtCu nanostructures for		
20	52, 12577-81 Monodisperse Cu@PtCu nanocrystals and their conversion into hollow-PtCu nanostructures for methanol oxidation. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 14449 Vertically stacked multi-heterostructures of layered materials for logic transistors and	13	57
20	Monodisperse Cu@PtCu nanocrystals and their conversion into hollow-PtCu nanostructures for methanol oxidation. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 14449 Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters. <i>Nature Materials</i> , 2013 , 12, 246-52 Palladium-based nanostructures with highly porous features and perpendicular pore channels as	13	57 7°5
20 19 18	Monodisperse Cu@PtCu nanocrystals and their conversion into hollow-PtCu nanostructures for methanol oxidation. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 14449 Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters. <i>Nature Materials</i> , 2013 , 12, 246-52 Palladium-based nanostructures with highly porous features and perpendicular pore channels as enhanced organic catalysts. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 2520-4 Plasmonic and catalytic AuPd nanowheels for the efficient conversion of light into chemical energy.	13 27 16.4	57 705 135
20 19 18	Monodisperse Cu@PtCu nanocrystals and their conversion into hollow-PtCu nanostructures for methanol oxidation. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 14449 Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters. <i>Nature Materials</i> , 2013 , 12, 246-52 Palladium-based nanostructures with highly porous features and perpendicular pore channels as enhanced organic catalysts. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 2520-4 Plasmonic and catalytic AuPd nanowheels for the efficient conversion of light into chemical energy. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 6063-7 Chemical vapour deposition growth of large single crystals of monolayer and bilayer graphene.	13 27 16.4 16.4	57 7°5 135

13	A versatile strategy to the selective synthesis of Cu nanocrystals and the in situ conversion to CuRu nanotubes. <i>Nanoscale</i> , 2013 , 5, 6284-90	7.7	32
12	Phase control in solid state silicide nanowire formation. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2013 , 10, 1666-1669		10
11	Palladium-Based Nanostructures with Highly Porous Features and Perpendicular Pore Channels as Enhanced Organic Catalysts. <i>Angewandte Chemie</i> , 2013 , 125, 2580-2584	3.6	52
10	The growth and applications of silicides for nanoscale devices. <i>Nanoscale</i> , 2012 , 4, 1412-21	7.7	37
9	Crystallinity control of ferromagnetic contacts in stressed nanowire templates and the magnetic domain anisotropy. <i>Nano Letters</i> , 2012 , 12, 4341-8	11.5	12
8	Kinetic competition model and size-dependent phase selection in 1-D nanostructures. <i>Nano Letters</i> , 2012 , 12, 3115-20	11.5	37
7	High-yield chemical vapor deposition growth of high-quality large-area AB-stacked bilayer graphene. <i>ACS Nano</i> , 2012 , 6, 8241-9	16.7	215
6	Domain wall motion in synthetic Co2Si nanowires. <i>Nano Letters</i> , 2012 , 12, 1972-6	11.5	12
5	A systematic study of atmospheric pressure chemical vapor deposition growth of large-area monolayer graphene. <i>Journal of Materials Chemistry</i> , 2012 , 22, 1498-1503		66
4	High-frequency self-aligned graphene transistors with transferred gate stacks. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 11588-92	11.5	267
3	Nanoelectronic Devices from Nanowire Heterostructures. ECS Transactions, 2010, 33, 3-11	1	
2	Detection of spin polarized carrier in silicon nanowire with single crystal MnSi as magnetic contacts. <i>Nano Letters</i> , 2010 , 10, 2281-7	11.5	63
1	Growth of nickel silicides in Si and Si/SiOx core/shell nanowires. <i>Nano Letters</i> , 2010 , 10, 4721-6	11.5	68