Gadi Schuster

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1436877/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bioelectricity generation from live marine photosynthetic macroalgae. Biosensors and Bioelectronics, 2022, 198, 113824.	5.3	30
2	The desert green algae <i>Chlorella ohadii</i> thrives at excessively high light intensities by exceptionally enhancing the mechanisms that protect photosynthesis from photoinhibition. Plant Journal, 2021, 106, 1260-1277.	2.8	24
3	Cryo-EM photosystem I structure reveals adaptation mechanisms to extreme high light in Chlorella ohadii. Nature Plants, 2021, 7, 1314-1322.	4.7	18
4	NADPH performs mediated electron transfer in cyanobacterial-driven bio-photoelectrochemical cells. IScience, 2021, 24, 101892.	1.9	42
5	Electron Mediation and Photocurrent Enhancement in Dunalliela salina Driven Bio-Photo Electrochemical Cells. Catalysts, 2021, 11, 1220.	1.6	23
6	Plant Ribonuclease J: An Essential Player in Maintaining Chloroplast RNA Quality Control for Gene Expression. Plants, 2020, 9, 334.	1.6	5
7	The Arabidopsis chloroplast RNase J displays both exo- and robust endonucleolytic activities. Plant Molecular Biology, 2019, 99, 17-29.	2.0	18
8	Live cyanobacteria produce photocurrent and hydrogen using both the respiratory and photosynthetic systems. Nature Communications, 2018, 9, 2168.	5.8	104
9	Polyadenylation and degradation of RNA in the mitochondria. Biochemical Society Transactions, 2016, 44, 1475-1482.	1.6	19
10	Hybrid bio-photo-electro-chemical cells for solar water splitting. Nature Communications, 2016, 7, 12552.	5.8	74
11	Identification of LACTB2, a metallo-β-lactamase protein, as a human mitochondrial endoribonuclease. Nucleic Acids Research, 2016, 44, 1813-1832.	6.5	37
12	The Photosystem II D1-K238E mutation enhances electrical current production using cyanobacterial thylakoid membranes in a bio-photoelectrochemical cell. Photosynthesis Research, 2015, 126, 161-169.	1.6	23
13	Photosynthetic Membranes of Synechocystis or Plants Convert Sunlight to Photocurrent through Different Pathways due to Different Architectures. PLoS ONE, 2015, 10, e0122616.	1.1	26
14	Oligo(dT)-primed RT-PCR Isolation of Polyadenylated RNA Degradation Intermediates. Methods in Enzymology, 2013, 530, 209-226.	0.4	3
15	Circularized RT-PCR (cRT-PCR). Methods in Enzymology, 2013, 530, 227-251.	0.4	20
16	RHON1 is a novel ribonucleic acid-binding protein that supports RNase E function in the Arabidopsis chloroplast. Nucleic Acids Research, 2012, 40, 8593-8606.	6.5	47
17	The rnb Gene of Synechocystis PCC6803 Encodes a RNA Hydrolase Displaying RNase II and Not RNase R Enzymatic Properties. PLoS ONE, 2012, 7, e32690.	1.1	13
18	Mutational analysis of Arabidopsis chloroplast polynucleotide phosphorylase reveals roles for both RNase PH core domains in polyadenylation, RNA 3′â€end maturation and intron degradation. Plant Journal, 2011, 67, 381-394.	2.8	42

#	Article	IF	CITATIONS
19	Chloroplast RNase J compensates for inefficient transcription termination by removal of antisense RNA. Rna, 2011, 17, 2165-2176.	1.6	68
20	Exonucleases and endonucleases involved in polyadenylation―assisted RNA decay. Wiley Interdisciplinary Reviews RNA, 2011, 2, 106-123.	3.2	15
21	Distinct activities of several RNase J proteins in methanogenic archaea. RNA Biology, 2011, 8, 1073-1083.	1.5	37
22	Mechanism of RNA stabilization and translational activation by a pentatricopeptide repeat protein. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 415-420.	3.3	262
23	Dis3-like 1: a novel exoribonuclease associated with the human exosome. EMBO Journal, 2010, 29, 2358-2367.	3.5	134
24	Addition of poly(A) and poly(A)-rich tails during RNA degradation in the cytoplasm of human cells. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 7407-7412.	3.3	54
25	Engineering of an alternative electron transfer path in photosystem II. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 9650-9655.	3.3	49
26	Polyadenylation in Arabidopsis and <i>Chlamydomonas</i> organelles: the input of nucleotidyltransferases, poly(A) polymerases and polynucleotide phosphorylase. Plant Journal, 2009, 59, 88-99.	2.8	50
27	Chapter 10 RNA Polyadenylation and Decay in Mitochondria and Chloroplasts. Progress in Molecular Biology and Translational Science, 2009, 85, 393-422.	0.9	90
28	Analysis of the human polynucleotide phosphorylase (PNPase) reveals differences in RNA binding and response to phosphate compared to its bacterial and chloroplast counterparts. Rna, 2008, 14, 297-309.	1.6	44
29	Mycoplasma gallisepticum as the first analyzed bacterium in which RNA is not polyadenylated. FEMS Microbiology Letters, 2008, 283, 97-103.	0.7	11
30	Overexpression of mutated forms of aspartate kinase and cystathionine Î ³ -synthase in tobacco leaves resulted in the high accumulation of methionine and threonine. Plant Journal, 2008, 54, 260-271.	2.8	66
31	Chapter 24 Detection and Characterization of Polyadenylated RNA in Eukarya, Bacteria, Archaea, and Organelles. Methods in Enzymology, 2008, 447, 501-520.	0.4	13
32	Polynucleotide phosphorylase and the archaeal exosome as poly(A)-polymerases. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2008, 1779, 247-255.	0.9	57
33	The RNase E/G-type endoribonuclease of higher plants is located in the chloroplast and cleaves RNA similarly to the <i>E. coli</i> enzyme. Rna, 2008, 14, 1057-1068.	1.6	63
34	Stable PNPase RNAi silencing: Its effect on the processing and adenylation of human mitochondrial RNA. Rna, 2007, 14, 310-323.	1.6	72
35	Processing, degradation, and polyadenylation of chloroplast transcripts. Topics in Current Genetics, 2007, , 175-211.	0.7	29
36	Lysine enhances methionine content by modulating the expression of <i>S</i> â€adenosylmethionine synthase. Plant Journal, 2007, 51, 850-861.	2.8	33

#	Article	IF	CITATIONS
37	The PNPase, exosome and RNA helicases as the building components of evolutionarily-conserved RNA degradation machines. Journal of Biomedical Science, 2007, 14, 523-532.	2.6	61
38	Anin vivointernal deletion in the N-terminus region of Arabidopsis cystathionineÎ ³ -synthase results in CGS expression that is insensitive to methionine. Plant Journal, 2006, 45, 955-967.	2.8	57
39	Polyadenylation of ribosomal RNA in human cells. Nucleic Acids Research, 2006, 34, 2966-2975.	6.5	113
40	RNA polyadenylation and degradation in different Archaea; roles of the exosome and RNase R. Nucleic Acids Research, 2006, 34, 5923-5931.	6.5	66
41	RNA Polyadenylation in Prokaryotes and Organelles; Different Tails Tell Different Tales. Critical Reviews in Plant Sciences, 2006, 25, 65-77.	2.7	45
42	The construction of DNA molecules of figure-eight structure. Analytical Biochemistry, 2005, 344, 86-91.	1.1	3
43	RNA polyadenylation in Archaea: not observed in Haloferax while the exosome polynucleotidylates RNA in Sulfolobus. EMBO Reports, 2005, 6, 1188-1193.	2.0	82
44	Polyadenylation and Degradation of Human Mitochondrial RNA: the Prokaryotic Past Leaves Its Mark. Molecular and Cellular Biology, 2005, 25, 6427-6435.	1.1	152
45	Cooperation of Endo- and Exoribonucleases in Chloroplast mRNA Turnover. Progress in Molecular Biology and Translational Science, 2004, 78, 305-337.	1.9	74
46	Identification of guttation fluid proteins: the presence of pathogenesis-related proteins in non-infected barley plants. Physiologia Plantarum, 2003, 119, 192-202.	2.6	57
47	RNA-binding properties of HCF152, an Arabidopsis PPR protein involved in the processing of chloroplast RNA. FEBS Journal, 2003, 270, 4070-4081.	0.2	109
48	Domain Analysis of the Chloroplast Polynucleotide Phosphorylase Reveals Discrete Functions in RNA Degradation, Polyadenylation, and Sequence Homology with Exosome Proteins. Plant Cell, 2003, 15, 2003-2019.	3.1	68
49	HCF152, an Arabidopsis RNA Binding Pentatricopeptide Repeat Protein Involved in the Processing of Chloroplast psbB-psbT-psbH-petB-petD RNAs. Plant Cell, 2003, 15, 1480-1495.	3.1	270
50	RNA Polyadenylation and Degradation in Cyanobacteria Are Similar to the Chloroplast but Different from Escherichia coli. Journal of Biological Chemistry, 2003, 278, 15771-15777.	1.6	101
51	Evidence forin vivomodulation of chloroplast RNA stability by 3′-UTR homopolymeric tails inChlamydomonas reinhardtii. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 4085-4090.	3.3	52
52	Substrate recognition by ADAR1 and ADAR2. Rna, 2001, 7, 846-858.	1.6	193
53	Insertion of polydeoxyadenosine-rich sequences into an intergenic region increases transcription in Chlamydomonas reinhardtii chloroplasts. Planta, 2001, 212, 851-857.	1.6	11
54	Polynucleotide Phosphorylase Functions as Both an Exonuclease and a Poly(A) Polymerase in Spinach Chloroplasts. Molecular and Cellular Biology, 2001, 21, 5408-5416.	1.1	154

#	Article	IF	CITATIONS
55	Polyadenylation of three classes of chloroplast RNA in Chlamydomonas reinhardtii. Rna, 2000, 6, 598-607.	1.6	63
56	Processing and degradation of chloroplast mRNA. Biochimie, 2000, 82, 573-582.	1.3	136
57	Polyadenylation and Degradation of mRNA in the Chloroplast1. Plant Physiology, 1999, 120, 937-944.	2.3	80
58	Altering the 3 UTR endonucleolytic cleavage site of a Chlamydomonas chloroplast mRNA affects 3-end maturation in vitro but not in vivo. Plant Molecular Biology, 1999, 40, 679-686.	2.0	13
59	Preferential degradation of polyadenylated and polyuridinylated RNAs by the bacterial exoribonuclease polynucleotide phosphorylase. FEBS Journal, 1999, 261, 468-474.	0.2	37
60	The sequence and structure of the 3'-untranslated regions of chloroplast transcripts are important determinants of mRNA accumulation and stability. Plant Molecular Biology, 1998, 36, 307-314.	2.0	49
61	3′-Processed mRNA Is Preferentially Translated in <i>Chlamydomonas reinhardtii</i> Chloroplasts. Molecular and Cellular Biology, 1998, 18, 4605-4611.	1.1	45
62	The Mechanism of Preferential Degradation of Polyadenylated RNA in the Chloroplast. Journal of Biological Chemistry, 1997, 272, 17648-17653.	1.6	69
63	Blocking polyadenylation of mRNA in the chloroplast inhibits its degradation. Plant Journal, 1997, 12, 1173-1178.	2.8	35
64	CSP41, a Sequence-Specific Chloroplast mRNA Binding Protein, Is an Endoribonuclease. Plant Cell, 1996, 8, 1409.	3.1	19
65	The 3′ untranslated regions of chloroplast genes in. Molecular Genetics and Genomics, 1996, 252, 676.	2.4	2
66	Phosphorylation of a chloroplast RNA-binding protein changes its affinity to RNA. Nucleic Acids Research, 1995, 23, 2506-2511.	6.5	69
67	RNA-binding activities of the different domains of a spinach chloroplast ribonucleoprotein. Nucleic Acids Research, 1994, 22, 4719-4724.	6.5	22
68	The apoprotein precursor of the major light-harvesting complex of photosystem II (LHCIIb) is inserted primarily into stromal lamellae and subsequently migrates to the grana. Plant Molecular Biology, 1990, 14, 753-764.	2.0	31
69	The P30 movement protein of tobacco mosaic virus is a single-strand nucleic acid binding protein. Cell, 1990, 60, 637-647.	13.5	482
70	Tyrosine phenol-lyase from Citrobacter intermedius. Factors controlling substrate specificity. FEBS Journal, 1988, 177, 395-401.	0.2	121
71	Turnover of thylakoid photosystem II proteins during photoinhibition of Chlamydomonas reinhardtii. FEBS Journal, 1988, 177, 403-410.	0.2	187
72	Structure and biogenesis of Chlamydomonas reinhardtii photosystem I. FEBS Journal, 1988, 177, 411-416.	0.2	123

#	Article	IF	CITATIONS
73	Evidence for protection by heat-shock proteins against photoinhibition during heat-shock. EMBO Journal, 1988, 7, 1-6.	3.5	99
74	Phosphorylation of spinach chlorophyll-protein complexes CPII*, but not CP29, CP27, or CP24, is phosphorylated in vitro. FEBS Letters, 1987, 215, 25-30.	1.3	34
75	Specific loss of LHCII phosphorylation in theLemnamutant 1073 lacking the cytochromeb6/fcomplex. FEBS Letters, 1987, 221, 205-210.	1.3	64
76	Transcription control of the 32 kDa-QBprotein of photosystem II in differentiated bundle sheath and mesophyll chloroplasts of maize. FEBS Letters, 1986, 198, 56-60.	1.3	15
77	Photosystem I reaction centers from maize bundle-sheath and mesophyll chloroplasts lack subunit III. FEBS Journal, 1986, 159, 157-161.	0.2	21
78	Adaptation to CO2 Level and Changes in the Phosphorylation of Thylakoid Proteins during the Cell Cycle of Chlamydomonas reinhardtii. Plant Physiology, 1986, 80, 604-607.	2.3	36
79	Purification and composition of photosystem I reaction center of Prochloron sp., an oxygen-evolving prokaryote containing chlorophyll b. FEBS Letters, 1985, 191, 29-33.	1.3	27
80	Nadph Performs Mediated Electron Transfer in Cyanobacterial-Driven Bio-Photoelectrochemical Cellsnadph Performs Mediated Electron Transfer in Cyanobacterial-Driven Bio-Photoelectrochemical Cells. SSRN Electronic Journal, 0, , .	0.4	0