

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1436783/publications.pdf Version: 2024-02-01

XIMANC

#	Article	IF	CITATIONS
1	Effective Strategy to Achieve Excellent Energy Storage Properties in Lead-Free BaTiO ₃ -Based Bulk Ceramics. ACS Applied Materials & Interfaces, 2020, 12, 30289-30296.	4.0	191
2	Highâ€Safety and Highâ€Energyâ€Density Lithium Metal Batteries in a Novel Ionicâ€Liquid Electrolyte. Advanced Materials, 2020, 32, e2001741.	11.1	176
3	Seed-mediated growth of MOF-encapsulated Pd@Ag core–shell nanoparticles: toward advanced room temperature nanocatalysts. Chemical Science, 2016, 7, 228-233.	3.7	128
4	Electrostatic Attraction-Driven Assembly of a Metal–Organic Framework with a Photosensitizer Boosts Photocatalytic CO ₂ Reduction to CO. Journal of the American Chemical Society, 2021, 143, 17424-17430.	6.6	127
5	Precise fabrication of single-atom alloy co-catalyst with optimal charge state for enhanced photocatalysis. National Science Review, 2021, 8, nwaa224.	4.6	125
6	Tailoring the d-band center of N-doped carbon nanotube arrays with Co4N nanoparticles and single-atom Co for a superior hydrogen evolution reaction. NPG Asia Materials, 2021, 13, .	3.8	95
7	Nanoporous carbons derived from MOFs as metal-free catalysts for selective aerobic oxidations. Journal of Materials Chemistry A, 2016, 4, 5247-5257.	5.2	86
8	Chemoselective hydrogenation of functionalized nitroarenes using MOF-derived co-based catalysts. Journal of Molecular Catalysis A, 2016, 420, 56-65.	4.8	85
9	Controlled growth of dense and ordered metal–organic framework nanoparticles on graphene oxide. Chemical Communications, 2015, 51, 3874-3877.	2.2	75
10	A microporous, moisture-stable, and amine-functionalized metal–organic framework for highly selective separation of CO ₂ from CH ₄ . Chemical Communications, 2012, 48, 1135-1137.	2.2	73
11	Nanoscale Co-based catalysts for low-temperature CO oxidation. Catalysis Science and Technology, 2015, 5, 1014-1020.	2.1	64
12	Regulating Charge Transfer of Lattice Oxygen in Singleâ€Atomâ€Doped Titania for Hydrogen Evolution. Angewandte Chemie - International Edition, 2020, 59, 15855-15859.	7.2	44
13	Lead-free thermochromic perovskites with tunable transition temperatures for smart window applications. Science China Chemistry, 2019, 62, 1257-1262.	4.2	39
14	MOF-derived metal oxide composite Mn ₂ Co ₁ O _x /CN for efficient formaldehyde oxidation at low temperature. Catalysis Science and Technology, 2019, 9, 5845-5854.	2.1	32
15	Modulating 3d Orbitals of Ni Atoms on Niâ€Pt Edge Sites Enables Highlyâ€Efficient Alkaline Hydrogen Evolution. Advanced Energy Materials, 2021, 11, 2101789.	10.2	30
16	Breaking the Stable Triangle of Carbonate via W–O Bonds for Li-CO ₂ Batteries with Low Polarization. ACS Energy Letters, 2021, 6, 3503-3510.	8.8	26
17	sp ² /sp ³ Hybridized Carbon as an Anode with Extra Li-Ion Storage Capacity: Construction and Origin. ACS Central Science, 2020, 6, 1451-1459.	5.3	22
18	Material and Device Architecture Engineering Toward High Performance Two-Dimensional (2D) Photodetectors. Crystals, 2017, 7, 149.	1.0	21

XI WANG

#	Article	IF	CITATIONS
19	Engineering O–O Species in Boron Nitrous Nanotubes Increases Olefins for Propane Oxidative Dehydrogenation. Journal of the American Chemical Society, 2022, 144, 5930-5936.	6.6	21
20	Manganese Doping in Cobalt Oxide Nanorods Promotes Catalytic Dehydrogenation. ACS Sustainable Chemistry and Engineering, 2020, 8, 5734-5741.	3.2	19
21	Understanding and Modifying the Scaling Relations for Ammonia Synthesis on Dilute Metal Alloys: From Single-Atom Alloys to Dimer Alloys. ACS Catalysis, 2022, 12, 9201-9212.	5.5	18
22	Selective catalytic oxidation of sulfides to sulfoxides or sulfones over amorphous Nb2O5/AC catalysts in aqueous phase at room temperature. Catalysis Communications, 2019, 127, 10-14.	1.6	16
23	Recent Advances in Atomic-scale Storage Mechanism Studies of Two-dimensional Nanomaterials for Rechargeable Batteries Beyond Li-ion. Chemical Research in Chinese Universities, 2020, 36, 560-583.	1.3	14
24	Hierarchical Ni/Co-LDHs catalyst for catalytic oxidation of indoor formaldehyde at ambient temperature. Journal of Materials Science: Materials in Electronics, 2020, 31, 3500-3509.	1.1	13
25	Engineering Electronic Structure of Single-Atom Pd Site on Ti 0.87 O 2 Nanosheet via Charge Transfer Enables C–Br Cleavage for Room-Temperature Suzuki Coupling. CCS Chemistry, 2021, 3, 1453-1462.	4.6	12
26	Regulating Charge Transfer of Lattice Oxygen in Singleâ€Atomâ€Ðoped Titania for Hydrogen Evolution. Angewandte Chemie, 2020, 132, 15989-15993.	1.6	10
27	Efficient Solventâ€Free Synthesis of Sucrose Esters <i>via</i> Sandâ€Milling Pretreatment on Solid–Liquid Mixtures. Journal of Surfactants and Detergents, 2019, 22, 1515-1520.	1.0	9
28	Selective Catalytic Oxidation of Cyclopentene to Glutaraldehyde over Amorphous Nb 2 O 5 /AC Catalysts. ChemistrySelect, 2022, 7, .	0.7	1