Silvia Landi

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1436736/silvia-landi-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

20	13,380	15	24
papers	citations	h-index	g-index
24	17,025 ext. citations	6.9	6.58
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
20	Neuroinflammation: A Signature or a Cause of Epilepsy?. <i>International Journal of Molecular Sciences</i> , 2021 , 22,	6.3	6
19	Modelling genetic mosaicism of neurodevelopmental disorders in vivo by a Cre-amplifying fluorescent reporter. <i>Nature Communications</i> , 2020 , 11, 6194	17.4	2
18	Transient Cognitive Impairment in Epilepsy. Frontiers in Molecular Neuroscience, 2018, 11, 458	6.1	11
17	Perineuronal nets control visual input via thalamic recruitment of cortical PV interneurons. <i>ELife</i> , 2018 , 7,	8.9	17
16	Epileptiform activity in the mouse visual cortex interferes with cortical processing in connected areas. <i>Scientific Reports</i> , 2017 , 7, 40054	4.9	5
15	Brain-wide Mapping of Endogenous Serotonergic Transmission via Chemogenetic fMRI. <i>Cell Reports</i> , 2017 , 21, 910-918	10.6	51
14	Simultaneous two-photon imaging of intracellular chloride concentration and pH in mouse pyramidal neurons in vivo. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, E8770-E8779	11.5	60
13	Early IGF-1 primes visual cortex maturation and accelerates developmental switch between NKCC1 and KCC2 chloride transporters in enriched animals. <i>Neuropharmacology</i> , 2017 , 113, 167-177	5.5	21
12	Ultrastructural Characterization of the Lower Motor System in a Mouse Model of Krabbe Disease. <i>Scientific Reports</i> , 2016 , 6, 1	4.9	12295
11	Arduino Due based tool to facilitate in vivo two-photon excitation microscopy. <i>Biomedical Optics Express</i> , 2016 , 7, 1604-13	3.5	4
10	Extracellular matrix inhibits structural and functional plasticity of dendritic spines in the adult visual cortex. <i>Nature Communications</i> , 2013 , 4, 1484	17.4	96
9	The short-time structural plasticity of dendritic spines is altered in a model of Rett syndrome. <i>Scientific Reports</i> , 2011 , 1, 45	4.9	60
8	Environmental enrichment potentiates thalamocortical transmission and plasticity in the adult rat visual cortex. <i>Journal of Neuroscience Research</i> , 2010 , 88, 3048-59	4.4	47
7	Reduced responsiveness to long-term monocular deprivation of parvalbumin neurons assessed by c-Fos staining in rat visual cortex. <i>PLoS ONE</i> , 2009 , 4, e4342	3.7	29
6	Setting the pace for retinal development: environmental enrichment acts through insulin-like growth factor 1 and brain-derived neurotrophic factor. <i>Journal of Neuroscience</i> , 2009 , 29, 10809-19	6.6	47
5	Insulin-like growth factor 1 (IGF-1) mediates the effects of enriched environment (EE) on visual cortical development. <i>PLoS ONE</i> , 2007 , 2, e475	3.7	85
4	Retinal functional development is sensitive to environmental enrichment: a role for BDNF. <i>FASEB Journal</i> , 2007 , 21, 130-9	0.9	72

LIST OF PUBLICATIONS

3	Environmental enrichment effects on development of retinal ganglion cell dendritic stratification require retinal BDNF. <i>PLoS ONE</i> , 2007 , 2, e346	3.7	57
2	Structural and functional recovery from early monocular deprivation in adult rats. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2006 , 103, 8517-22	11.5	283
1	Enriched environment and acceleration of visual system development. <i>Neuropharmacology</i> , 2004 , 47, 649-60	5.5	131