List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1436456/publications.pdf Version: 2024-02-01

Μλατινι Παικ

#	Article	IF	CITATIONS
1	Effects of Foliar Application of ZnO Nanoparticles on Lentil Production, Stress Level and Nutritional Seed Quality under Field Conditions. Nanomaterials, 2022, 12, 310.	4.1	18
2	Fungal-induced modification of spontaneously precipitated ochreous sediments from drainage of abandoned antimony mine. Chemosphere, 2021, 269, 128733.	8.2	2
3	Sorptive and Redox Interactions of Humic Substances and Metal(loid)s in the Presence of Microorganisms. Fungal Biology, 2021, , 201-215.	0.6	0
4	Mobilisation of hazardous elements from arsenic-rich mine drainage ochres by three Aspergillus species. Journal of Hazardous Materials, 2021, 409, 124938.	12.4	8
5	Bioleaching of Manganese Oxides at Different Oxidation States by Filamentous Fungus Aspergillus niger. Journal of Fungi (Basel, Switzerland), 2021, 7, 808.	3.5	5
6	The Effect of High Selenite and Selenate Concentrations on Ferric Oxyhydroxides Transformation under Alkaline Conditions. International Journal of Molecular Sciences, 2021, 22, 9955.	4.1	6
7	Fungal Mobilization of Selenium in the Presence of Hausmannite and Ferric Oxyhydroxides. Journal of Fungi (Basel, Switzerland), 2021, 7, 810.	3.5	5
8	lodine Fractions in Soil and Their Determination. Forests, 2021, 12, 1512.	2.1	9
9	Field Application of ZnO and TiO2 Nanoparticles on Agricultural Plants. Agronomy, 2021, 11, 2281.	3.0	26
10	Production of Methyl-Iodide in the Environment. Frontiers in Microbiology, 2021, 12, 804081.	3.5	2
11	Partitioning and stability of ionic, nano- and microsized zinc in natural soil suspensions. Science of the Total Environment, 2020, 700, 134445.	8.0	17
12	Aspergillus niger enhances oxalate production as a response to phosphate deficiency induced by aluminium(III). Journal of Inorganic Biochemistry, 2020, 204, 110961.	3.5	6
13	The effects of selenate on goethite synthesis and selenate sorption kinetics onto a goethite surface - A three-step process with an unexpected desorption phase. Chemical Geology, 2020, 556, 119852.	3.3	10
14	Aspergillus niger Decreases Bioavailability of Arsenic(V) via Biotransformation of Manganese Oxide into Biogenic Oxalate Minerals. Journal of Fungi (Basel, Switzerland), 2020, 6, 270.	3.5	6
15	Distribution of TiO2 Nanoparticles in Acidic and Alkaline Soil and Their Accumulation by Aspergillus niger. Agronomy, 2020, 10, 1833.	3.0	8
16	Biodegradation mechanism of arsenopyrite mine tailing with Acidithiobacillus ferrooxidans and influence of ferric supplements. International Biodeterioration and Biodegradation, 2020, 153, 105042.	3.9	11
17	Fungus Aspergillus niger Processes Exogenous Zinc Nanoparticles into a Biogenic Oxalate Mineral. Journal of Fungi (Basel, Switzerland), 2020, 6, 210.	3.5	7
18	Genetic Diversity, Ochratoxin A and Fumonisin Profiles of Strains of Aspergillus Section Nigri Isolated from Dried Vine Fruits. Toxins, 2020, 12, 592.	3.4	8

#	Article	IF	CITATIONS
19	Foliar Application of Low Concentrations of Titanium Dioxide and Zinc Oxide Nanoparticles to the Common Sunflower under Field Conditions. Nanomaterials, 2020, 10, 1619.	4.1	66
20	Sequential Extraction Resulted in Similar Fractionation of Ionic Zn, Nano- and Microparticles of ZnO in Acidic and Alkaline Soil. Forests, 2020, 11, 1077.	2.1	4
21	lodine Biofortification of Vegetables Could Improve Iodine Supplementation Status. Agronomy, 2020, 10, 1574.	3.0	14
22	Assessment of Aspergillus niger Strain's Suitability for Arsenate-Contaminated Water Treatment and Adsorbent Recycling via Bioextraction in a Laboratory-Scale Experiment. Microorganisms, 2020, 8, 1668.	3.6	4
23	Impact of Bulk ZnO, ZnO Nanoparticles and Dissolved Zn on Early Growth Stages of Barley—A Pot Experiment. Plants, 2020, 9, 1365.	3.5	20
24	lodine fractionation in agricultural and forest soils using extraction methods. Catena, 2020, 195, 104749.	5.0	10
25	Intensified bioleaching of chalcopyrite concentrate using adapted mesophilic culture in continuous stirred tank reactors. Bioresource Technology, 2020, 307, 123181.	9.6	32
26	Identification of Magnetic Phases in Natural Ochres by Mössbauer Spectroscopy. Acta Physica Polonica A, 2020, 137, 667-669.	0.5	0
27	Selenite sorption onto goethite: isotherm and ion-competitive studies, and effect of pH on sorption kinetics. Chemical Papers, 2019, 73, 2975-2985.	2.2	18
28	Fungal bioextraction of iron from kaolin. Chemical Papers, 2019, 73, 3025-3029.	2.2	9
29	Comparison of two morphologically different fungal biomass types for experimental separation of labile aluminium species using atomic spectrometry methods. Chemical Papers, 2019, 73, 3019-3023.	2.2	1
30	Effect of Foliar Spray Application of Zinc Oxide Nanoparticles on Quantitative, Nutritional, and Physiological Parameters of Foxtail Millet (Setaria italica L.) under Field Conditions. Nanomaterials, 2019, 9, 1559.	4.1	69
31	Antimony leaching from antimony-bearing ferric oxyhydroxides by filamentous fungi and biotransformation of ferric substrate. Science of the Total Environment, 2019, 664, 683-689.	8.0	24
32	Influence of physicochemical properties of various soil types on iodide and iodate sorption. Chemosphere, 2019, 214, 168-175.	8.2	18
33	Removal of aluminium from aqueous solution by four wild-type strains of Aspergillus niger. Bioprocess and Biosystems Engineering, 2019, 42, 291-296.	3.4	12
34	Nanogold Biosynthesis Mediated by Mixed Flower Pollen Grains. Journal of Nanoscience and Nanotechnology, 2019, 19, 2983-2988.	0.9	4
35	Increased Colloidal Stability and Decreased Solubility—Sol—Gel Synthesis of Zinc Oxide Nanoparticles with Humic Acids. Journal of Nanoscience and Nanotechnology, 2019, 19, 3024-3030.	0.9	5
36	Selenite Distribution in Multicomponent System Consisting of Filamentous Fungus, Humic Acids, Bentonite, and Ferric Oxyhydroxides. Water, Air, and Soil Pollution, 2018, 229, 1.	2.4	9

#	Article	IF	CITATIONS
37	Interaction with soil enhances the toxic effect of iodide and iodate on barley (Hordeum vulgare L.) compared to artificial culture media during initial growth stage. Archives of Agronomy and Soil Science, 2018, 64, 46-57.	2.6	17
38	Evaluation of aluminium mobilization from its soil mineral pools by simultaneous effect of Aspergillus strains' acidic and chelating exometabolites. Journal of Inorganic Biochemistry, 2018, 181, 162-168.	3.5	13
39	Aluminium Leaching by Heterotrophic Microorganism Aspergillus niger: An Acidic Leaching?. Arabian Journal for Science and Engineering, 2018, 43, 2369-2374.	3.0	14
40	Infiltration Variability in Agricultural Soil Aggregates Caused by Air Slaking. Eurasian Soil Science, 2018, 51, 428-433.	1.6	3
41	Physiological response of culture media-grown barley (Hordeum vulgare L.) to titanium oxide nanoparticles. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2017, 67, 285-291.	0.6	18
42	Heterotrophic Bacterial Leaching of Zinc and Arsenic from Artificial Adamite. Water, Air, and Soil Pollution, 2017, 228, 1.	2.4	11
43	Comparison of Iodide and Iodate Accumulation and Volatilization by Filamentous Fungi during Static Cultivation. Water, Air, and Soil Pollution, 2017, 228, 1.	2.4	9
44	Fungal Selenium(VI) Accumulation and Biotransformation—Filamentous Fungi in Selenate Contaminated Aqueous Media Remediation. Clean - Soil, Air, Water, 2016, 44, 610-614.	1.1	18
45	Fungal solubilization of manganese oxide and its significance for antimony mobility. International Biodeterioration and Biodegradation, 2016, 114, 157-163.	3.9	19
46	Comparable phosphate adsorption onto some natural aluminosilicates vs. Fe(III)oxihydroxide. Desalination and Water Treatment, 2016, 57, 7387-7395.	1.0	3
47	Chemical mimicking of bio-assisted aluminium extraction by Aspergillus niger's exometabolites. Environmental Pollution, 2016, 218, 281-288.	7.5	12
48	Aging and Substrate Type Effects on Iodide and Iodate Accumulation by Barley (Hordeum vulgare L.). Water, Air, and Soil Pollution, 2016, 227, 1.	2.4	7
49	Mercury in mercury(II)-spiked soils is highly susceptible to plant bioaccumulation. International Journal of Phytoremediation, 2016, 18, 195-199.	3.1	5
50	New Approaches to the Cloud Point Extraction: Utilizable for Separation and Preconcentration of Trace Metals. Current Analytical Chemistry, 2016, 12, 87-93.	1.2	24
51	Evaluation of Various Inorganic and Biological Extraction Techniques Suitability for Soil Mercury Phytoavailable Fraction Assessment. Water, Air, and Soil Pollution, 2015, 226, 1.	2.4	18
52	Basic soil properties as a factor controlling the occurrence and intensity of water repellency in rankers of the White Carpathians. Folia Forestalia Polonica, Series A, 2015, 57, 129-137.	0.3	0
53	Bismuth(III) Volatilization and Immobilization by Filamentous Fungus Aspergillus clavatus During Aerobic Incubation. Archives of Environmental Contamination and Toxicology, 2015, 68, 405-411.	4.1	4
54	Aluminium leaching from red mud by filamentous fungi. Journal of Inorganic Biochemistry, 2015, 152, 154-159.	3.5	42

#	Article	IF	CITATIONS
55	Potential of Microscopic Fungi Isolated from Mercury Contaminated Soils to Accumulate and Volatilize Mercury(II). Water, Air, and Soil Pollution, 2014, 225, 1.	2.4	40
56	Biologically Induced Mobilization of Arsenic Adsorbed onto Amorphous Ferric Oxyhydroxides in Aqueous Solution During Fungal Cultivation. Water, Air, and Soil Pollution, 2014, 225, 1.	2.4	14
57	Unexpected formation of Ag2SO4 microparticles from Ag2S nanoparticles synthesised using poplar leaf extract. Environmental Chemistry Letters, 2014, 12, 551-556.	16.2	5
58	Sorption of Humic Acids onto Fungal Surfaces and Its Effect on Heavy Metal Mobility. Water, Air, and Soil Pollution, 2014, 225, 1.	2.4	11
59	Removal of arsenic from aqueous environments by native and chemically modified biomass of <i>Aspergillus niger</i> and <i>Neosartorya fischeri</i> . Environmental Technology (United) Tj ETQq1 1 0.78431	42r g BT /O	vadock 10
60	Fungal volatilization of trivalent and pentavalent arsenic under laboratory conditions. Bioresource Technology, 2009, 100, 1037-1040.	9.6	66
61	Removal of arsenic (V) from aqueous solutions using chemically modified sawdust of spruce (Picea) Tj ETQq1 1 0. 2009, 6, 451-456.	784314 rg 3.5	gBT /Overloo 58
62	Biosorption and Biovolatilization of Arsenic by Heat-Resistant Fungi (5 pp). Environmental Science and Pollution Research, 2007, 14, 31-35.	5.3	55
63	Biovolatilization of Arsenic by Different Fungal Strains. Water, Air, and Soil Pollution, 2007, 186, 337-342.	2.4	60