
L Keith Henry

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1436438/publications.pdf Version: 2024-02-01

I KEITH HENDY

#	Article	IF	CITATIONS
1	Taurine treatment of retinal degeneration and cardiomyopathy in a consanguineous family with SLC6A6 taurine transporter deficiency. Human Molecular Genetics, 2020, 29, 618-623.	2.9	29
2	Identification, Characterization, and Treatment for a Taurine Transporter (SLC6A6) Variant Resulting in Taurine Deficiency and Pathologies in a Consanguineous Family FASEB Journal, 2020, 34, 1-1.	0.5	0
3	Human Serotonin Transporter Coding Variation Establishes Conformational Bias with Functional Consequences. ACS Chemical Neuroscience, 2019, 10, 3249-3260.	3.5	17
4	Identification of the benztropine analog [125I]GA II 34 binding site on the human dopamine transporter. Neurochemistry International, 2019, 123, 34-45.	3.8	4
5	Photoaffinityâ€Mediated Identification of a Third Citalopram Analog Binding Site on the Serotonin Transporter. FASEB Journal, 2018, 32, 680.1.	0.5	1
6	Fluoxetine and citalopram significantly alter gene expression in the midbrain of neonate mice uncovering possible antidepressantâ€mediated epigenetic programming changes during development FASEB Journal, 2018, 32, 787.19.	0.5	0
7	Elucidation of selfâ€mediated enhancement of dopamine transport by the dopamine transporter which can be modulated by extracellular gate and Nâ€ŧerminal residues. FASEB Journal, 2018, 32, 680.6.	0.5	0
8	Blockade of the 5â€HT transporter contributes to the behavioural, neuronal and molecular effects of cocaine. British Journal of Pharmacology, 2017, 174, 2716-2738.	5.4	28
9	Inhibition of the Serotonin Transporter Is Altered by Metabolites of Selective Serotonin and Norepinephrine Reuptake Inhibitors and Represents a Caution to Acute or Chronic Treatment Paradigms. ACS Chemical Neuroscience, 2017, 8, 1011-1018.	3.5	9
10	Inhibitor mechanisms in the S1 binding site of the dopamine transporter defined by multi-site molecular tethering of photoactive cocaine analogs. Biochemical Pharmacology, 2017, 142, 204-215.	4.4	4
11	The sigma-1 receptor modulates methamphetamine dysregulation of dopamine neurotransmission. Nature Communications, 2017, 8, 2228.	12.8	92
12	The external gate of the human and Drosophila serotonin transporters requires a basic/acidic amino acid pair for 3,4-methylenedioxymethamphetamine (MDMA) translocation and the induction of substrate efflux. Biochemical Pharmacology, 2016, 120, 46-55.	4.4	3
13	Membrane potential shapes regulation of dopamine transporter trafficking at the plasma membrane. Nature Communications, 2016, 7, 10423.	12.8	50
14	Novel Azido-Iodo Photoaffinity Ligands for the Human Serotonin Transporter Based on the Selective Serotonin Reuptake Inhibitor (<i>S</i>)-Citalopram. Journal of Medicinal Chemistry, 2015, 58, 5609-5619.	6.4	10
15	The Two Na+ Sites in the Human Serotonin Transporter Play Distinct Roles in the Ion Coupling and Electrogenicity of Transport. Journal of Biological Chemistry, 2014, 289, 1825-1840.	3.4	37
16	Antagonist-induced conformational changes in dopamine transporter extracellular loop two involve residues in a potential salt bridge. Neurochemistry International, 2014, 73, 16-26.	3.8	7
17	Computational and Biochemical Docking of the Irreversible Cocaine Analog RTI 82 Directly Demonstrates Ligand Positioning in the Dopamine Transporter Central Substrate-binding Site. Journal of Biological Chemistry, 2014, 289, 29712-29727.	3.4	24
18	Stereoselective inhibition of serotonin transporters by antimalarial compounds. Neurochemistry International, 2014, 73, 98-106.	3.8	9

L Keith Henry

#	Article	IF	CITATIONS
19	SLC6 transporters: Structure, function, regulation, disease association and therapeutics. Molecular Aspects of Medicine, 2013, 34, 197-219.	6.4	232
20	A Conserved Asparagine Residue in Transmembrane Segment 1 (TM1) of Serotonin Transporter Dictates Chloride-coupled Neurotransmitter Transport. Journal of Biological Chemistry, 2011, 286, 30823-30836.	3.4	32
21	Transmembrane Domain 6 of the Human Serotonin Transporter Contributes to an Aqueously Accessible Binding Pocket for Serotonin and the Psychostimulant 3,4-Methylene Dioxymethamphetamine. Journal of Biological Chemistry, 2010, 285, 11270-11280.	3.4	31
22	Structural determinants of speciesâ€selective substrate recognition in human and <i>Drosophila</i> serotonin transporters revealed through computational docking studies. Proteins: Structure, Function and Bioinformatics, 2009, 74, 630-642.	2.6	56
23	Beyond Prozac: Generation and characterization of SSRI Insensitive Transgenic Mice. FASEB Journal, 2009, 23, 942.7.	0.5	0
24	Distinctions between Dopamine Transporter Antagonists Could be Just around the Bend: Fig. 1 Molecular Pharmacology, 2008, 73, 616-618.	2.3	7
25	Bound to Be Different: Neurotransmitter Transporters Meet Their Bacterial Cousins. Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics, 2007, 7, 306-309.	3.4	24
26	Getting the Message Across: A Recent Transporter Structure Shows the Way. Neuron, 2006, 49, 791-796.	8.1	43
27	Tyr-95 and Ile-172 in Transmembrane Segments 1 and 3 of Human Serotonin Transporters Interact to Establish High Affinity Recognition of Antidepressants. Journal of Biological Chemistry, 2006, 281, 2012-2023.	3.4	158
28	Serotonin and Cocaine-sensitive Inactivation of Human Serotonin Transporters by Methanethiosulfonates Targeted to Transmembrane Domain I. Journal of Biological Chemistry, 2003, 278, 37052-37063.	3.4	87