Pravas Deria

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1436277/publications.pdf

Version: 2024-02-01

61 papers

6,128 citations

94433 37 h-index 62 g-index

64 all docs

64
docs citations

64 times ranked 7829 citing authors

#	Article	IF	Citations
1	Superradiance and Directional Exciton Migration in Metal–Organic Frameworks. Journal of the American Chemical Society, 2022, 144, 1396-1406.	13.7	22
2	BODIPY-Based Polymers of Intrinsic Microporosity for the Photocatalytic Detoxification of a Chemical Threat. ACS Applied Materials & Samp; Interfaces, 2022, 14, 12596-12605.	8.0	6
3	Light-Harvesting "Antenna―Behavior in NU-1000. ACS Energy Letters, 2021, 6, 848-853.	17.4	40
4	Anthracene–Triphenylamine-Based Platinum(II) Metallacages as Synthetic Light-Harvesting Assembly. Journal of the American Chemical Society, 2021, 143, 2908-2919.	13.7	76
5	Physical properties of porphyrin-based crystalline metalâ€'organic frameworks. Communications Chemistry, 2021, 4, .	4.5	54
6	Tuning Redox Hopping Charge-Transport in Metalâ^'Organic Frameworks. ECS Meeting Abstracts, 2021, MA2021-01, 782-782.	0.0	0
7	Photoinduced Charge Transfer with a Small Driving Force Facilitated by Exciplex-like Complex Formation in Metal–Organic Frameworks. Journal of the American Chemical Society, 2021, 143, 15286-15297.	13.7	30
8	Post-Synthetically Elaborated BODIPY-Based Porous Organic Polymers (POPs) for the Photochemical Detoxification of a Sulfur Mustard Simulant. Journal of the American Chemical Society, 2020, 142, 18554-18564.	13.7	88
9	The role of photoinduced charge transfer for photocatalysis, photoelectrocatalysis and luminescence sensing in metal–organic frameworks. Dalton Transactions, 2020, 49, 12892-12917.	3.3	23
10	Supramolecular Porous Organic Nanocomposites for Heterogeneous Photocatalysis of a Sulfur Mustard Simulant. Advanced Materials, 2020, 32, e2001592.	21.0	23
11	Improving Energy Transfer within Metal–Organic Frameworks by Aligning Linker Transition Dipoles along the Framework Axis. Journal of the American Chemical Society, 2020, 142, 11192-11202.	13.7	48
12	Controlling Charge-Transport in Metal–Organic Frameworks: Contribution of Topological and Spin-State Variation on the Iron–Porphyrin Centered Redox Hopping Rate. Journal of Physical Chemistry B, 2019, 123, 8814-8822.	2.6	40
13	Wavelength-Dependent Energy and Charge Transfer in MOF: A Step toward Artificial Porous Light-Harvesting System. Journal of the American Chemical Society, 2019, 141, 16849-16857.	13.7	93
14	Light-Harvesting in Porous Crystalline Compositions: Where We Stand toward Robust Metal–Organic Frameworks. ACS Sustainable Chemistry and Engineering, 2019, 7, 1841-1854.	6.7	43
15	Unusual solvent polarity dependent excitation relaxation dynamics of a bis[<i>p</i> -ethynyldithiobenzoato]Pd-linked bis[(porphinato)zinc] complex. Molecular Systems Design and Engineering, 2018, 3, 275-284.	3.4	1
16	Charge-Transfer within Zr-Based Metal–Organic Framework: The Role of Polar Node. Journal of the American Chemical Society, 2018, 140, 2756-2760.	13.7	78
17	Metal-Organic Frameworks-Based Electrocatalysis: Insight and Future Perspectives. Comments on Inorganic Chemistry, 2018, 38, 166-209.	5.2	9
18	Excited-State Electronic Properties in Zr-Based Metal–Organic Frameworks as a Function of a Topological Network. Journal of the American Chemical Society, 2018, 140, 10488-10496.	13.7	107

#	Article	IF	CITATIONS
19	Charge Transfer within Metal-Organic Frameworks: The Role of Polar Node in the Electrocatalysis and Charge Storage. ECS Transactions, 2018, 85, 559-564.	0.5	6
20	Functionalised cyclodextrin-based metal–organic frameworks. Chemical Communications, 2017, 53, 7561-7564.	4.1	55
21	Ground-State versus Excited-State Interchromophoric Interaction: Topology Dependent Excimer Contribution in Metal–Organic Framework Photophysics. Journal of the American Chemical Society, 2017, 139, 5973-5983.	13.7	122
22	Topology-dependent emissive properties of zirconium-based porphyrin MOFs. Chemical Communications, 2016, 52, 13031-13034.	4.1	69
23	First-order hyperpolarizabilities of chiral, polymer-wrapped single-walled carbon nanotubes. Chemical Communications, 2016, 52, 12206-12209.	4.1	6
24	In silico discovery of metal-organic frameworks for precombustion CO ₂ capture using a genetic algorithm. Science Advances, 2016, 2, e1600909.	10.3	231
25	Framework-Topology-Dependent Catalytic Activity of Zirconium-Based (Porphinato)zinc(II) MOFs. Journal of the American Chemical Society, 2016, 138, 14449-14457.	13.7	210
26	One Electron Changes Everything. A Multispecies Copper Redox Shuttle for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2016, 120, 3731-3740.	3.1	45
27	Unambiguous Diagnosis of Photoinduced Charge Carrier Signatures in a Stoichiometrically Controlled Semiconducting Polymerâ€Wrapped Carbon Nanotube Assembly. Angewandte Chemie - International Edition, 2015, 54, 8133-8138.	13.8	17
28	Unambiguous Diagnosis of Photoinduced Charge Carrier Signatures in a Stoichiometrically Controlled Semiconducting Polymerâ€Wrapped Carbon Nanotube Assembly. Angewandte Chemie, 2015, 127, 8251-8256.	2.0	8
29	Synthesis of nanocrystals of Zr-based metal–organic frameworks with csq-net: significant enhancement in the degradation of a nerve agent simulant. Chemical Communications, 2015, 51, 10925-10928.	4.1	194
30	MOF Functionalization via Solvent-Assisted Ligand Incorporation: Phosphonates vs Carboxylates. Inorganic Chemistry, 2015, 54, 2185-2192.	4.0	177
31	Bias-Switchable Permselectivity and Redox Catalytic Activity of a Ferrocene-Functionalized, Thin-Film Metal–Organic Framework Compound. Journal of Physical Chemistry Letters, 2015, 6, 586-591.	4.6	120
32	Ultrahigh Surface Area Zirconium MOFs and Insights into the Applicability of the BET Theory. Journal of the American Chemical Society, 2015, 137, 3585-3591.	13.7	329
33	A MOF platform for incorporation of complementary organic motifs for CO ₂ binding. Chemical Communications, 2015, 51, 12478-12481.	4.1	45
34	Selective Solvent-Assisted Linker Exchange (SALE) in a Series of Zeolitic Imidazolate Frameworks. Inorganic Chemistry, 2015, 54, 7142-7144.	4.0	49
35	Water stabilization of Zr ₆ -based metal–organic frameworks via solvent-assisted ligand incorporation. Chemical Science, 2015, 6, 5172-5176.	7.4	102
36	A thermodynamic tank model for studying the effect of higher hydrocarbons on natural gas storage in metal–organic frameworks. Energy and Environmental Science, 2015, 8, 1501-1510.	30.8	84

#	Article	IF	Citations
37	Electrochemically addressable trisradical rotaxanes organized within a metal–organic framework. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11161-11168.	7.1	83
38	A porous proton-relaying metal-organic framework material that accelerates electrochemical hydrogen evolution. Nature Communications, 2015, 6, 8304.	12.8	239
39	Fe-Porphyrin-Based Metal–Organic Framework Films as High-Surface Concentration, Heterogeneous Catalysts for Electrochemical Reduction of CO ₂ . ACS Catalysis, 2015, 5, 6302-6309.	11.2	639
40	Ultraporous, Water Stable, and Breathing Zirconium-Based Metal–Organic Frameworks with ftw Topology. Journal of the American Chemical Society, 2015, 137, 13183-13190.	13.7	149
41	Fluence-Dependent Singlet Exciton Dynamics in Length-Sorted Chirality-Enriched Single-Walled Carbon Nanotubes. Nano Letters, 2014, 14, 504-511.	9.1	27
42	Versatile functionalization of the NU-1000 platform by solvent-assisted ligand incorporation. Chemical Communications, 2014, 50, 1965.	4.1	208
43	Directed Growth of Electroactive Metalâ€Organic Framework Thin Films Using Electrophoretic Deposition. Advanced Materials, 2014, 26, 6295-6300.	21.0	265
44	Potentiometric, Electronic, and Transient Absorptive Spectroscopic Properties of Oxidized Single-Walled Carbon Nanotubes Helically Wrapped by Ionic, Semiconducting Polymers in Aqueous and Organic Media. Journal of the American Chemical Society, 2014, 136, 14193-14199.	13.7	23
45	Beyond post-synthesis modification: evolution of metal–organic frameworks via building block replacement. Chemical Society Reviews, 2014, 43, 5896-5912.	38.1	721
46	High-Surface-Area Architectures for Improved Charge Transfer Kinetics at the Dark Electrode in Dye-Sensitized Solar Cells. ACS Applied Materials & Solar Cells.	8.0	17
47	Origins of the Helical Wrapping of Phenyleneethynylene Polymers about Single-Walled Carbon Nanotubes. Journal of Physical Chemistry B, 2013, 117, 12953-12965.	2.6	35
48	Single-Handed Helical Wrapping of Single-Walled Carbon Nanotubes by Chiral, Ionic, Semiconducting Polymers. Journal of the American Chemical Society, 2013, 135, 16220-16234.	13.7	68
49	Perfluoroalkane Functionalization of NU-1000 via Solvent-Assisted Ligand Incorporation: Synthesis and CO ₂ Adsorption Studies. Journal of the American Chemical Society, 2013, 135, 16801-16804.	13.7	473
50	Raman Spectroscopic Investigation of Individual Single-Walled Carbon Nanotubes Helically Wrapped by Ionic, Semiconducting Polymers. Journal of Physical Chemistry C, 2013, 117, 14840-14849.	3.1	15
51	Ionic Selfâ€Assembly Provides Dense Arrays of Individualized, Aligned Singleâ€Walled Carbon Nanotubes. Angewandte Chemie - International Edition, 2013, 52, 13080-13085.	13.8	16
52	Effect of Solvent Polarity and Electrophilicity on Quantum Yields and Solvatochromic Shifts of Single-Walled Carbon Nanotube Photoluminescence. Journal of the American Chemical Society, 2012, 134, 12485-12491.	13.7	91
53	Composite Electronic Materials Based on Poly(3,4-propylenedioxythiophene) and Highly Charged Poly(aryleneethynylene)-Wrapped Carbon Nanotubes for Supercapacitors. ACS Applied Materials & Interfaces, 2012, 4, 102-109.	8.0	51
54	Dynamics and Transient Absorption Spectral Signatures of the Single-Wall Carbon Nanotube Electronically Excited Triplet State. Journal of the American Chemical Society, 2011, 133, 17156-17159.	13.7	66

PRAVAS DERIA

#	Article	IF	CITATION
55	Phase Transfer Catalysts Drive Diverse Organic Solvent Solubility of Single-Walled Carbon Nanotubes Helically Wrapped by Ionic, Semiconducting Polymers. Nano Letters, 2010, 10, 4192-4199.	9.1	40
56	Composite Electronic Materials for Supercapacitor Applications. ECS Transactions, 2009, 23, 3-10.	0.5	1
57	Helical Wrapping of Single-Walled Carbon Nanotubes by Water Soluble Poly(<i>p</i> p-phenyleneethynylene). Nano Letters, 2009, 9, 1414-1418.	9.1	162
58	Synthesis of Water-Soluble Poly(<i>p</i> p-phenyleneethynylene) in Neat Water under Aerobic Conditions via Suzuki-Miyaura Polycondensation Using a Diborylethyne Synthon. Organic Letters, 2008, 10, 1341-1344.	4.6	33
59	Evaluation of Composite Electronic Materials Based upon Single-Wall Carbon Nanotubes and Highly Charged Poly(aryleneethynylene)s for Supercapacitor Applications. ECS Transactions, 2008, 16, 93-101.	0.5	4
60	Metalated hybrid polymers as catalytic reagents for phosphate ester hydrolysis and plasmid modification. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 1559-1562.	2.2	18
61	Visible and near-infrared excited-state dynamics of single-walled carbon nanotubes. Applied Physics A: Materials Science and Processing, 2004, 79, 1747-1751.	2.3	26