Linda A Barlow

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1436172/publications.pdf

Version: 2024-02-01

279487 253896 2,029 44 23 43 citations h-index g-index papers 53 53 53 1786 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The sense of taste: Development, regeneration, and dysfunction. WIREs Mechanisms of Disease, 2022, 14, e1547.	1.5	14
2	A mechanistic overview of taste bud maintenance and impairment in cancer therapies. Chemical Senses, 2021, 46, .	1.1	6
3	Cellular diversity and regeneration in taste buds. Current Opinion in Physiology, 2021, 20, 146-153.	0.9	22
4	Generation and Culture of Lingual Organoids Derived from Adult Mouse Taste Stem Cells. Journal of Visualized Experiments, 2021, , .	0.2	4
5	Onset of taste bud cell renewal starts at birth and coincides with a shift in SHH function. ELife, 2021, 10, .	2.8	24
6	Identifying Treatments for Taste and Smell Disorders: Gaps and Opportunities. Chemical Senses, 2020, 45, 493-502.	1.1	32
7	COVID-19 and the Chemical Senses: Supporting Players Take Center Stage. Neuron, 2020, 107, 219-233.	3.8	256
8	Fractionated head and neck irradiation impacts taste progenitors, differentiated taste cells, and Wnt \hat{l}^2 -catenin signaling in adult mice. Scientific Reports, 2019, 9, 17934.	1.6	18
9	How Do Taste Buds EAT?: Defining the Embryoâ€toâ€Adult Transition in Mouse Taste Bud Development and Regeneration. FASEB Journal, 2019, 33, 81.1.	0.2	O
10	Effect of Radiation on Sucrose Detection Thresholds of Mice. Chemical Senses, 2018, 43, 53-58.	1.1	12
11	SOX2 Regulation by hedgehog signaling controls adult lingual epithelium homeostasis. Development (Cambridge), 2018, 145, .	1.2	17
12	WNT10A mutation causes ectodermal dysplasia by impairing progenitor cell proliferation and KLF4-mediated differentiation. Nature Communications, 2017, 8, 15397.	5.8	104
13	Sonic Hedgehog from both nerves and epithelium is a key trophic factor for taste bud maintenance. Development (Cambridge), 2017, 144, 3054-3065.	1.2	48
14	\hat{l}^2 -catenin is required for taste bud cell renewal and behavioral taste perception in adult mice. PLoS Genetics, 2017, 13, e1006990.	1.5	32
15	ß-Catenin signaling regulates temporally discrete phases of anterior taste bud development. Development (Cambridge), 2015, 142, 4309-17.	1.2	15
16	Developing and Regenerating a Sense of Taste. Current Topics in Developmental Biology, 2015, 111, 401-419.	1.0	73
17	\hat{l}^2 -Catenin Signaling Biases Multipotent Lingual Epithelial Progenitors to Differentiate and Acquire Specific Taste Cell Fates. PLoS Genetics, 2015, 11, e1005208.	1.5	56
18	Progress and renewal in gustation: new insights into taste bud development. Development (Cambridge), 2015, 142, 3620-3629.	1.2	134

#	Article	IF	Citations
19	Induction of ectopic taste buds by SHH reveals the competency and plasticity of adult lingual epithelium. Development (Cambridge), 2014, 141, 2993-3002.	1.2	68
20	<i>Sonic hedgehog</i> –expressing basal cells are general postâ€mitotic precursors of functional taste receptor cells. Developmental Dynamics, 2014, 243, 1286-1297.	0.8	89
21	Developing a sense of taste. Seminars in Cell and Developmental Biology, 2013, 24, 200-209.	2.3	61
22	Mechanisms of Taste Bud Cell Loss after Head and Neck Irradiation. Journal of Neuroscience, 2012, 32, 3474-3484.	1.7	76
23	Epibranchial placodeâ€derived neurons produce BDNF required for early sensory neuron development. Developmental Dynamics, 2011, 240, 309-323.	0.8	23
24	Taste bud cells of adult mice are responsive to Wnt/β atenin signaling: Implications for the renewal of mature taste cells. Genesis, 2011, 49, 295-306.	0.8	36
25	FGF Signaling Regulates the Number of Posterior Taste Papillae by Controlling Progenitor Field Size. PLoS Genetics, 2011, 7, e1002098.	1.5	57
26	Differential expression of a BMP4 reporter allele in anterior fungiform versus posterior circumvallate taste buds of mice. BMC Neuroscience, 2010, 11, 129.	0.8	23
27	<i>In Vivo</i> Fate Tracing Studies of Mammalian Taste Cell Progenitors. Annals of the New York Academy of Sciences, 2009, 1170, 34-38.	1.8	5
28	Fate mapping of mammalian embryonic taste bud progenitors. Development (Cambridge), 2009, 136, 1519-1528.	1.2	83
29	Embryonic origin of gustatory cranial sensory neurons. Developmental Biology, 2007, 310, 317-328.	0.9	34
30	Wnt-Î ² -catenin signaling initiates taste papilla development. Nature Genetics, 2007, 39, 106-112.	9.4	139
31	The bHLH transcription factors, Hes6 and Mash1, are expressed in distinct subsets of cells within adult mouse taste buds. Archives of Histology and Cytology, 2006, 69, 189-198.	0.2	33
32	Cell contact-dependent mechanisms specify taste bud pattern during a critical period early in embryonic development. Developmental Dynamics, 2004, 230, 630-642.	0.8	12
33	Toward a unified model of vertebrate taste bud development. Journal of Comparative Neurology, 2003, 457, 107-110.	0.9	17
34	Notch-associated gene expression in embryonic and adult taste papillae and taste buds suggests a role in taste cell lineage decisions. Journal of Comparative Neurology, 2003, 464, 49-61.	0.9	46
35	Gustatory neurons derived from epibranchial placodes are attracted to, and trophically supported by, taste bud-bearing endoderm in vitro. Developmental Biology, 2003, 264, 467-481.	0.9	15
36	Cranial Nerve Development: Placodal Neurons Ride the Crest. Current Biology, 2002, 12, R171-R173.	1.8	30

#	Article	IF	CITATIONS
37	Specification of pharyngeal endoderm is dependent on early signals from axial mesoderm. Development (Cambridge), 2001, 128, 4573-4583.	1.2	14
38	Distribution and Innervation of Taste Buds in the Axolotl. Brain, Behavior and Evolution, 2000, 56, 123-145.	0.9	18
39	A Taste for Development. Neuron, 1999, 22, 209-212.	3.8	19
40	The Role of Innervation in the Development of Taste Buds: Insights from Studies of Amphibian Embryosa. Annals of the New York Academy of Sciences, 1998, 855, 58-69.	1.8	17
41	Amphibians provide new insights into taste-bud development. Trends in Neurosciences, 1998, 21, 38-43.	4.2	40
42	Embryonic Origin of Amphibian Taste Buds. Developmental Biology, 1995, 169, 273-285.	0.9	100
43	Analysis of the embryonic lineage of vertebrate taste buds. Chemical Senses, 1994, 19, 715-724.	1.1	8
44	Patterns of serotonin and SCP immunoreactivity during metamorphosis of the nervous system of the red abalone, Haliotis rufescens. Journal of Neurobiology, 1992, 23, 829-844.	3.7	83