Golam Haider

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/143610/publications.pdf

Version: 2024-02-01

41 papers

1,420 citations

331538 21 h-index 330025 37 g-index

42 all docs 42 docs citations 42 times ranked 2518 citing authors

#	Article	IF	CITATIONS
1	Low-Threshold Lasing from 2D Homologous Organic–Inorganic Hybrid Ruddlesden–Popper Perovskite Single Crystals. Nano Letters, 2018, 18, 3221-3228.	4.5	177
2	Electricalâ€Polarizationâ€Induced Ultrahigh Responsivity Photodetectors Based on Graphene and Graphene Quantum Dots. Advanced Functional Materials, 2016, 26, 620-628.	7.8	98
3	Electrically Driven White Light Emission from Intrinsic Metal–Organic Framework. ACS Nano, 2016, 10, 8366-8375.	7.3	93
4	Highly Stretchable and Sensitive Photodetectors Based on Hybrid Graphene and Graphene Quantum Dots. ACS Applied Materials & Samp; Interfaces, 2016, 8, 466-471.	4.0	86
5	Wrinkled 2D Materials: A Versatile Platform for Lowâ€Threshold Stretchable Random Lasers. Advanced Materials, 2017, 29, 1703549.	11.1	85
6	Semiconductor Behavior of a Three-Dimensional Strontium-Based Metal–Organic Framework. ACS Applied Materials & Samp; Interfaces, 2015, 7, 22767-22774.	4.0	71
7	Graphene Sandwich Stable Perovskite Quantum-Dot Light-Emissive Ultrasensitive and Ultrafast Broadband Vertical Phototransistors. ACS Nano, 2019, 13, 12540-12552.	7.3	69
8	A White Random Laser. Scientific Reports, 2018, 8, 2720.	1.6	65
9	Transparent, Wearable, Broadband, and Highly Sensitive Upconversion Nanoparticles and Graphene-Based Hybrid Photodetectors. ACS Photonics, 2018, 5, 2336-2347.	3.2	59
10	Trapped Photons Induced Ultrahigh External Quantum Efficiency and Photoresponsivity in Hybrid Graphene/Metalâ€Organic Framework Broadband Wearable Photodetectors. Advanced Functional Materials, 2018, 28, 1804802.	7.8	59
11	A Highly-Efficient Single Segment White Random Laser. ACS Nano, 2018, 12, 11847-11859.	7.3	51
12	Ultrasensitive Gas Sensors Based on Vertical Graphene Nanowalls/SiC/Si Heterostructure. ACS Sensors, 2019, 4, 406-412.	4.0	46
13	Solution-Processable, Crystalline π-Conjugated Two-Dimensional Polymers with High Charge Carrier Mobility. CheM, 2020, 6, 2035-2045.	5.8	44
14	Towards the evaluation of defects in MoS ₂ using cryogenic photoluminescence spectroscopy. Nanoscale, 2020, 12, 3019-3028.	2.8	37
15	Multicolor Ultralowâ€Threshold Random Laser Assisted by Verticalâ€Graphene Network. Advanced Optical Materials, 2018, 6, 1800382.	3.6	35
16	Continuous broadband emission from a metal–organic framework as a human-friendly white light source. Journal of Materials Chemistry C, 2016, 4, 4728-4732.	2.7	34
17	Integration of Nanoscale Light Emitters and Hyperbolic Metamaterials: An Efficient Platform for the Enhancement of Random Laser Action. ACS Photonics, 2018, 5, 718-727.	3.2	34
18	Magnetically Controllable Random Lasers. Advanced Materials Technologies, 2017, 2, 1700170.	3.0	32

#	Article	IF	CITATIONS
19	Dirac point induced ultralow-threshold laser and giant optoelectronic quantum oscillations in graphene-based heterojunctions. Nature Communications, 2017, 8, 256.	5.8	27
20	Plasmonic Carbon-Dot-Decorated Nanostructured Semiconductors for Efficient and Tunable Random Laser Action. ACS Applied Nano Materials, 2018, 1, 152-159.	2.4	22
21	Transient and Flexible Photodetectors. ACS Applied Nano Materials, 2018, 1, 5092-5100.	2.4	22
22	Inkjetâ€Printed Random Lasers. Advanced Materials Technologies, 2018, 3, 1800214.	3.0	20
23	Whispering Gallery Mode Lasing from Self-Assembled Hexagonal Perovskite Single Crystals and Porous Thin Films Decorated by Dielectric Spherical Resonators. ACS Photonics, 2017, 4, 146-155.	3.2	19
24	All-marine based random lasers. Organic Electronics, 2018, 62, 209-215.	1.4	18
25	Transient and Flexible Hyperbolic Metamaterials on Freeform Surfaces. Scientific Reports, 2018, 8, 9469.	1.6	17
26	Self-Healing Nanophotonics: Robust and Soft Random Lasers. ACS Nano, 2019, 13, 8977-8985.	7.3	14
27	Ultra-high performance flexible piezopotential gated In _{1â^'x} Sn _x Se phototransistor. Nanoscale, 2018, 10, 18642-18650.	2.8	13
28	Highly sensitive broadband binary photoresponse in gateless epitaxial graphene on 4H–SiC. Carbon, 2021, 184, 72-81.	5.4	13
29	Superradiant Emission from Coherent Excitons in van Der Waals Heterostructures. Advanced Functional Materials, 2021, 31, 2102196.	7.8	12
30	Nanoscale Core–Shell Hyperbolic Structures for Ultralow Threshold Laser Action: An Efficient Platform for the Enhancement of Optical Manipulation. ACS Applied Materials & Diterfaces, 2019, 11, 1163-1173.	4.0	11
31	Single-Molecule-Based Electroluminescent Device as Future White Light Source. ACS Applied Materials & Eamp; Interfaces, 2019, 11, 4084-4092.	4.0	10
32	Structural characterization of superlattice of microcrystalline silicon carbide layers for photovoltaic application. Journal of Applied Physics, 2013, 113, .	1.1	7
33	Highâ€Performance Lightâ€Emitting Memories: Multifunctional Devices for Unveiling Information by Optical and Electrical Detection. Advanced Optical Materials, 2016, 4, 1744-1749.	3.6	5
34	Rippled Metallicâ€Nanowire/Graphene/Semiconductor Nanostack for a Gateâ€Tunable Ultrahighâ€Performance Stretchable Phototransistor. Advanced Optical Materials, 2020, 8, 2000859.	3.6	5
35	Ultralow Threshold Cavity-Free Laser Induced by Total Internal Reflection. ACS Omega, 2020, 5, 18551-18556.	1.6	4
36	Analysis of the microstructure of silicon quantum dot superlattice embedded microcrystalline silicon carbide for solar cell application. , $2013, \ldots$		2

#	Article	IF	CITATIONS
37	Graphene based multiple heterojunctions as an effective approach for high-performance gas sensing. Applied Physics Letters, 2016, 109, 122107.	1.5	2
38	Toward Grapheneâ€Enhanced Spectroelectrochemical Sensors. Advanced Materials Interfaces, 0, , 2200478.	1.9	1
39	Random Lasers: Multicolor Ultralow-Threshold Random Laser Assisted by Vertical-Graphene Network (Advanced Optical Materials 16/2018). Advanced Optical Materials, 2018, 6, 1870063.	3.6	O
40	High performance light emitting memories: multifunctional devices for unveiling information by optical and electrical detection., $2017, \dots$		0
41	Nanoscale Core-Shell Hyperbolic Structure: A New Paradigm to Boost the Light-Matter Interaction. , 2019, , .		0