
Charles W Knapp

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1435993/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evaluating acute toxicity in enriched nitrifying cultures: Lessons learned. Journal of Microbiological Methods, 2022, 192, 106377.	0.7	0
2	Towards a general model for predicting minimal metal concentrations co-selecting for antibiotic resistance plasmids. Environmental Pollution, 2021, 275, 116602.	3.7	22
3	Pharmaceuticals and personal care products' (PPCPs) impact on enriched nitrifying cultures. Environmental Science and Pollution Research, 2021, 28, 60968-60980.	2.7	10
4	Electrochemical sensing of SARS-CoV-2 amplicons with PCB electrodes. Sensors and Actuators B: Chemical, 2021, 343, 130169.	4.0	46
5	Climate Change: Any Dangers from Antimicrobial Resistant Bacteria?. , 2021, , 145-171.		0
6	Transcriptomic Profile and Probiotic Properties of Lactiplantibacillus pentosus Pre-adapted to Edible Oils. Frontiers in Microbiology, 2021, 12, 747043.	1.5	6
7	High Prevalence and Factors Associated With the Distribution of the Integron intl1 and intl2 Genes in Scottish Cattle Herds. Frontiers in Veterinary Science, 2021, 8, 755833.	0.9	2
8	The legacy of industrial pollution in estuarine sediments: spatial and temporal variability implications for ecosystem stress. Environmental Geochemistry and Health, 2020, 42, 1057-1068.	1.8	21
9	In silico mapping of microbial communities and stress responses in a porcine slaughterhouse and pork products through its production chain, and the efficacy of HLE disinfectant. Food Research International, 2020, 136, 109486.	2.9	8
10	Potential risks of antibiotic resistant bacteria and genes in bioremediation of petroleum hydrocarbon contaminated soils. Environmental Sciences: Processes and Impacts, 2020, 22, 1110-1124.	1.7	27
11	Heavy Metal Toxicity in Armed Conflicts Potentiates AMR in A. baumannii by Selecting for Antibiotic and Heavy Metal Co-resistance Mechanisms. Frontiers in Microbiology, 2020, 11, 68.	1.5	79
12	Bridging the Gaps: Bole and Terra Sigillata as Artefacts, as Simples and as Antibacterial Clays. Minerals (Basel, Switzerland), 2020, 10, 348.	0.8	6
13	The interweaving roles of mineral and microbiome in shaping the antibacterial activity of archaeological medicinal clays. Journal of Ethnopharmacology, 2020, 260, 112894.	2.0	3
14	Environmental impacts of decommissioning: Onshore versus offshore wind farms. Environmental Impact Assessment Review, 2020, 83, 106404.	4.4	26
15	War, antimicrobial resistance, and Acinetobacter baumannii (WAMRA). International Journal of Infectious Diseases, 2020, 101, 87-88.	1.5	1
16	New insights into the role of plasmids from probiotic Lactobacillus pentosus MP-10 in Aloreña table olive brine fermentation. Scientific Reports, 2019, 9, 10938.	1.6	13
17	Editorial: Horizontal Gene Transfer Mediated Bacterial Antibiotic Resistance. Frontiers in Microbiology, 2019, 10, 1933.	1.5	136
18	New insights into the molecular effects and probiotic properties of Lactobacillus pentosus pre-adapted to edible oils. LWT - Food Science and Technology, 2019, 109, 153-162.	2.5	10

CHARLES W KNAPP

#	Article	IF	CITATIONS
19	Rapid selection of antimicrobial-resistant bacteria in complex water systems by chlorine and pipe materials. Environmental Chemistry Letters, 2019, 17, 1367-1373.	8.3	20
20	Can the legacy of industrial pollution influence antimicrobial resistance in estuarine sediments?. Environmental Chemistry Letters, 2019, 17, 595-607.	8.3	59
21	Effect of β-glycosidase supplementation on vinasse saccharification and L-lactic acid fermentation. BioResources, 2019, 14, 1379-1389.	0.5	1
22	Seasonal dynamics of tetracycline resistance gene transport in the Sumas River agricultural watershed of British Columbia, Canada. Science of the Total Environment, 2018, 628-629, 490-498.	3.9	28
23	Proteomic analysis of Lactobacillus pentosus for the identification of potential markers involved in acid resistance and their influence on other probiotic features. Food Microbiology, 2018, 72, 31-38.	2.1	36
24	Greco-Roman mineral (litho)therapeutics and their relationship to their microbiome: The case of the red pigment miltos. Journal of Archaeological Science: Reports, 2018, 22, 179-192.	0.2	7
25	Deciphering Resistome and Virulome Diversity in a Porcine Slaughterhouse and Pork Products Through Its Production Chain. Frontiers in Microbiology, 2018, 9, 2099.	1.5	17
26	Efficacy of "HLEâ€â€"a multidrug efflux-pump inhibitor—as a disinfectant against surface bacteria. Environmental Research, 2018, 165, 133-139.	3.7	9
27	Inputs, source apportionment, and transboundary transport of pesticides and other polar organic contaminants along the lower Red River, Manitoba, Canada. Science of the Total Environment, 2018, 635, 803-816.	3.9	36
28	Proteomic analysis of Lactobacillus pentosus for the identification of potential markers of adhesion and other probiotic features. Food Research International, 2018, 111, 58-66.	2.9	22
29	Guidance for Investigating Calcite Precipitation by Urea Hydrolysis for Geomaterials. Journal of Testing and Evaluation, 2018, 46, 1527-1538.	0.4	17
30	The use of minimum selectable concentrations (MSCs) for determining the selection of antimicrobial resistant bacteria. Ecotoxicology, 2017, 26, 283-292.	1.1	49
31	Relationship between antibiotic resistance genes and metals in residential soil samples from Western Australia. Environmental Science and Pollution Research, 2017, 24, 2484-2494.	2.7	153
32	Insight into Potential Probiotic Markers Predicted in Lactobacillus pentosus MP-10 Genome Sequence. Frontiers in Microbiology, 2017, 8, 891.	1.5	47
33	In silico genomic insights into aspects of food safety and defense mechanisms of a potentially probiotic Lactobacillus pentosus MP-10 isolated from brines of naturally fermented Aloreña green table olives. PLoS ONE, 2017, 12, e0176801.	1.1	23
34	Antibiotic Resistance Profile of Microbes From Traditional Fermented Foods. , 2017, , 675-704.		10
35	A 21-year record of vertically migrating subepilimnetic populations of Cryptomonas spp Inland Waters, 2016, 6, 173-184.	1.1	7
36	Appearance of β-lactam Resistance Genes in Agricultural Soils and Clinical Isolates over the 20th Century. Scientific Reports, 2016, 6, 21550.	1.6	119

CHARLES W KNAPP

#	Article	IF	CITATIONS
37	The release of wastewater contaminants in the Arctic: A case study from Cambridge Bay, Nunavut, Canada. Environmental Pollution, 2016, 218, 542-550.	3.7	29
38	Biocide tolerance, phenotypic and molecular response of lactic acid bacteria isolated from naturally-fermented AloreA±a table to different physico-chemical stresses. Food Microbiology, 2016, 60, 1-12.	2.1	21
39	Antibiotic Resistant Bacteria Found in Municipal Drinking Water. Environmental Processes, 2016, 3, 541-552.	1.7	50
40	Application of microbially induced calcite precipitation in erosion mitigation and stabilisation of sandy soil foreshore slopes: A preliminary investigation. Engineering Geology, 2016, 201, 96-105.	2.9	191
41	Comparative proteomic analysis of a potentially probiotic Lactobacillus pentosus MP-10 for the identification of key proteins involved in antibiotic resistance and biocide tolerance. International Journal of Food Microbiology, 2016, 222, 8-15.	2.1	26
42	Relationship between antibiotic- and disinfectant-resistance profiles in bacteria harvested from tap water. Chemosphere, 2016, 152, 132-141.	4.2	120
43	Reducing nutrients, organic micropollutants, antibiotic resistance, and toxicity in rural wastewater effluent with subsurface filtration treatment technology. Ecological Engineering, 2015, 84, 375-385.	1.6	24
44	Impacts of thermal and smouldering remediation on plant growth and soil ecology. Geoderma, 2015, 243-244, 1-9.	2.3	55
45	Diversity, Distribution and Quantification of Antibiotic Resistance Genes in Goat and Lamb Slaughterhouse Surfaces and Meat Products. PLoS ONE, 2014, 9, e114252.	1.1	21
46	Legionella spp. in UK composts—a potential public health issue?. Clinical Microbiology and Infection, 2014, 20, O224-O229.	2.8	26
47	Frequency-dependent ultrasound-induced transformation in E. coli. Biotechnology Letters, 2014, 36, 2461-2465.	1.1	3
48	Macrophytes may not contribute significantly to removal of nutrients, pharmaceuticals, and antibiotic resistance in model surface constructed wetlands. Science of the Total Environment, 2014, 482-483, 294-304.	3.9	66
49	Discovery of Catalytic Phages by Biocatalytic Self-Assembly. Journal of the American Chemical Society, 2014, 136, 15893-15896.	6.6	53
50	Increased Waterborne <i>bla</i> _{NDM-1} Resistance Gene Abundances Associated with Seasonal Human Pilgrimages to the Upper Ganges River. Environmental Science & Technology, 2014, 48, 3014-3020.	4.6	133
51	Acute and chronic environmental effects of clandestine methamphetamine waste. Science of the Total Environment, 2014, 493, 781-788.	3.9	8
52	Effects of biochar and activated carbon amendment on maize growth and the uptake and measured availability of polycyclic aromatic hydrocarbons (PAHs) and potentially toxic elements (PTEs). Environmental Pollution, 2014, 193, 79-87.	3.7	101
53	Performance of a constructed wetland in Grand Marais, Manitoba, Canada: Removal of nutrients, pharmaceuticals, and antibiotic resistance genes from municipal wastewater. Chemistry Central Journal, 2013, 7, 54.	2.6	67
54	Antimicrobial properties of enzymatically triggered self-assembling aromatic peptide amphiphiles. Biomaterials Science, 2013, 1, 1138.	2.6	65

CHARLES W KNAPP

#	Article	IF	CITATIONS
55	Seasonal Variations in Antibiotic Resistance Gene Transport in the Almendares River, Havana, Cuba. Frontiers in Microbiology, 2012, 3, 396.	1.5	80
56	Conditional confined oscillatory dynamics of Escherichia coli strain K12-MG1655 in chemostat systems. Applied Microbiology and Biotechnology, 2012, 94, 185-192.	1.7	4
57	Copper-Binding Properties and Structures of Methanobactins from Methylosinus trichosporium OB3b. Inorganic Chemistry, 2011, 50, 1378-1391.	1.9	76
58	Antibiotic Resistance Gene Abundances Associated with Waste Discharges to the Almendares River near Havana, Cuba. Environmental Science & amp; Technology, 2011, 45, 418-424.	4.6	264
59	Predicting antibiotic resistance, not just for quinolones. Frontiers in Microbiology, 2011, 2, 178.	1.5	2
60	Antibiotic Resistance Gene Abundances Correlate with Metal and Geochemical Conditions in Archived Scottish Soils. PLoS ONE, 2011, 6, e27300.	1.1	310
61	Differential fate of erythromycin and beta-lactam resistance genes from swine lagoon waste under different aquatic conditions. Environmental Pollution, 2010, 158, 1506-1512.	3.7	70
62	Correlations between in situ denitrification activity and nir-gene abundances in pristine and impacted prairie streams. Environmental Pollution, 2010, 158, 3225-3229.	3.7	72
63	Evidence of Increasing Antibiotic Resistance Gene Abundances in Archived Soils since 1940. Environmental Science & Technology, 2010, 44, 580-587.	4.6	665
64	Spatial Heterogeneity of Denitrification Genes in a Highly Homogenous Urban Stream. Environmental Science & Technology, 2009, 43, 4273-4279.	4.6	74
65	Accumulation of Tetracycline Resistance Genes in Aquatic Biofilms Due to Periodic Waste Loadings from Swine Lagoons. Environmental Science & Technology, 2009, 43, 7643-7650.	4.6	46
66	A comparative assessment of molecular biological and direct microscopic techniques for assessing aquatic systems. Environmental Monitoring and Assessment, 2008, 145, 465-473.	1.3	0
67	Fate of Tetracycline Resistance Genes in Aquatic Systems: Migration from the Water Column to Peripheral Biofilms. Environmental Science & Technology, 2008, 42, 5131-5136.	4.6	95
68	Indirect Evidence of Transposon-Mediated Selection of Antibiotic Resistance Genes in Aquatic Systems at Low-Level Oxytetracycline Exposures. Environmental Science & Technology, 2008, 42, 5348-5353.	4.6	111
69	Methane monooxygenase gene expression mediated by methanobactin in the presence of mineral copper sources. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 12040-12045.	3.3	94
70	Experimental demonstration of chaotic instability in biological nitrification. ISME Journal, 2007, 1, 385-393.	4.4	247
71	Abundance of six tetracycline resistance genes in wastewater lagoons at cattle feedlots with different antibiotic use strategies. Environmental Microbiology, 2007, 9, 143-151.	1.8	297
72	Methanobactin-promoted dissolution of Cu-substituted borosilicate glass. Geobiology, 2007, 5, 251-263.	1.1	32

#	Article	IF	CITATIONS
73	Nitrite-oxidizing bacteria guild ecology associated with nitrification failure in a continuous-flow reactor. FEMS Microbiology Ecology, 2007, 62, 195-201.	1.3	50
74	Influence of isolation on the recovery of pond mesocosms from the application of an insecticide. I. Study design and planktonic community responses. Environmental Toxicology and Chemistry, 2007, 26, 1265-1279.	2.2	49
75	Field assessment of oxytetracycline exposure to the freshwater macrophytes Egeria densa Planch. and Ceratophyllum demersum L Environmental Pollution, 2006, 141, 434-442.	3.7	21
76	Effects of eutrophication on vitellogenin gene expression in male fathead minnows (Pimephales) Tj ETQq0 0 0 rgB 559-566.	T /Overloo 3.7	ck 10 Tf 50 6 14
77	Disappearance of oxytetracycline resistance genes in aquatic systems. FEMS Microbiology Letters, 2006, 263, 176-182.	0.7	42
78	RESPONSES OF MOLECULAR INDICATORS OF EXPOSURE IN MESOCOSMS: COMMON CARP (CYPRINUS) TJ ETQq Chemistry, 2005, 24, 190.	0 0 0 rgB1 2.2	[Overlock] 34
79	Response of water column microbial communities to sudden exposure to deltamethrin in aquatic mesocosms. FEMS Microbiology Ecology, 2005, 54, 157-165.	1.3	21
80	Factors Affecting the Fate of Ciprofloxacin in Aquatic Field Systems. Water, Air, and Soil Pollution, 2005, 161, 383-398.	1.1	122
81	Fate and Effects of Enrofloxacin in Aquatic Systems under Different Light Conditions. Environmental Science & Technology, 2005, 39, 9140-9146.	4.6	90
82	Quantification of Tetracycline Resistance Genes in Feedlot Lagoons by Real-Time PCR. Applied and Environmental Microbiology, 2004, 70, 7372-7377.	1.4	167
83	Development of alternate ssu-rRNA probing strategies for characterizing aquatic microbial communities. Journal of Microbiological Methods, 2004, 56, 323-330.	0.7	8
84	PHYSICAL AND CHEMICAL CONDITIONS SURROUNDING THE DIURNAL VERTICAL MIGRATION OF <i>CRYPTOMONAS</i> SPP. (CRYPTOPHYCEAE) IN A SEASONALLY STRATIFIED MIDWESTERN RESERVIOR (USA). Journal of Phycology, 2003, 39, 855-861.	1.0	17
85	Nutrient level, microbial activity, and alachlor transformation in aerobic aquatic systems. Water Research, 2003, 37, 4761-4769.	5.3	28
86	Influence of Autochthonous Dissolved Organic Carbon and Nutrient Limitation on Alachlor Biotransformation in Aerobic Aquatic Systems. Environmental Science & Technology, 2003, 37, 4157-4162.	4.6	23
87	Industrial and agricultural wastes as a potential biofilter media for groundwater nitrate remediation. , 0, 172, 330-343.		2