Zachary M Easton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1435664/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evaluating the joint effects of climate and land use change on runoff and pollutant loading in a rapidly developing watershed. Journal of Cleaner Production, 2022, 330, 129953.	4.6	38
2	Coupling a land surface model with a hydrodynamic model for regional flood risk assessment due to climate change: Application to the Susquehanna River near Harrisburg, Pennsylvania. Journal of Flood Risk Management, 2022, 15, e12763.	1.6	2
3	Confronting our Agricultural Nonpoint Source Control Policy Problem. Journal of the American Water Resources Association, 2022, 58, 496-501.	1.0	8
4	Impacts of climate change on terrestrial hydrological components and crop water use in the Chesapeake Bay watershed. Journal of Hydrology: Regional Studies, 2021, 35, 100830.	1.0	7
5	Identification of phosphorus index improvements through model comparisons across topographic regions in a small agricultural watershed in Vermont (USA). Soil Science Society of America Journal, 2021, 85, 1226-1241.	1.2	4
6	Treatment of Legacy Nitrogen as a Compliance Option to Meet Chesapeake Bay TMDL Requirements. Environmental Science & Technology, 2021, 55, 13593-13601.	4.6	9
7	Evaluating the Impact of Climate Change on Water Quality and Quantity in an Urban Watershed Using an Ensemble Approach. Estuaries and Coasts, 2020, 43, 56-72.	1.0	20
8	Export of nitrogen and phosphorus from golf courses: A review. Journal of Environmental Management, 2020, 255, 109817.	3.8	25
9	An open-source research tool to study triaxial inertial sensors for monitoring selected behaviors in sheep. Translational Animal Science, 2020, 4, txaa188.	0.4	4
10	Comparison of short-term streamflow forecasting using stochastic time series, neural networks, process-based, and Bayesian models. Environmental Modelling and Software, 2020, 126, 104669.	1.9	67
11	Reducing nitrogen control costs by within- and cross-county targeting. Journal of Environmental Management, 2020, 263, 110333.	3.8	1
12	Phosphorus and the Chesapeake Bay: Lingering Issues and Emerging Concerns for Agriculture. Journal of Environmental Quality, 2019, 48, 1191-1203.	1.0	48
13	Feasibility of Using Woodchip Bioreactors to Treat Legacy Nitrogen to Meet Chesapeake Bay Water Quality Goals. Environmental Science & Technology, 2019, 53, 12291-12299.	4.6	12
14	Quantifying model uncertainty using Bayesian multi-model ensembles. Environmental Modelling and Software, 2019, 117, 89-99.	1.9	11
15	Meeting Water Quality Goals by Spatial Targeting of Best Management Practices under Climate Change. Environmental Management, 2019, 63, 173-184.	1.2	21
16	Biochar fails to enhance nutrient removal in woodchip bioreactor columns following saturation. Journal of Environmental Management, 2019, 232, 490-498.	3.8	20
17	Performance of an under-loaded denitrifying bioreactor with biochar amendment. Journal of Environmental Management, 2018, 217, 447-455.	3.8	21
18	Agricultural conservation practices can help mitigate the impact of climate change. Science of the Total Environment, 2018, 635, 132-143.	3.9	63

ZACHARY M EASTON

#	Article	IF	CITATIONS
19	Meeting Water Quality Goals under Climate Change in Chesapeake Bay Watershed, USA. Journal of the American Water Resources Association, 2018, 54, 1239-1257.	1.0	15
20	Estimating dominant runoff modes across the conterminous United States. Hydrological Processes, 2018, 32, 3881-3890.	1.1	16
21	Impact of climate change and climate anomalies on hydrologic and biogeochemical processes in an agricultural catchment of the Chesapeake Bay watershed, USA. Science of the Total Environment, 2018, 637-638, 1443-1454.	3.9	57
22	Effect of biochar, hydraulic residence time, and nutrient loading on greenhouse gas emission in laboratory-scale denitrifying bioreactors. Ecological Engineering, 2018, 120, 375-383.	1.6	21
23	Development of a nitrous oxide routine for the SWAT model to assess greenhouse gas emissions from agroecosystems. Environmental Modelling and Software, 2017, 89, 131-143.	1.9	28
24	Shortâ€ŧerm Forecasting Tools for Agricultural Nutrient Management. Journal of Environmental Quality, 2017, 46, 1257-1269.	1.0	20
25	A Web Based Interface for Distributed Short-Term Soil Moisture Forecasts. Water (Switzerland), 2017, 9, 604.	1.2	1
26	Assessing the Effects of Climate Change on Water Quantity and Quality in an Urban Watershed Using a Calibrated Stormwater Model. Water (Switzerland), 2017, 9, 464.	1.2	59
27	Improved Simulation of Edaphic and Manure Phosphorus Loss in SWAT. Journal of Environmental Quality, 2016, 45, 1215-1225.	1.0	42
28	Improving the spatial representation of soil properties and hydrology using topographically derived initialization processes in the SWAT model. Hydrological Processes, 2016, 30, 4633-4643.	1.1	20
29	Climate change in the Blue Nile Basin Ethiopia: implications for water resources and sediment transport. Climatic Change, 2016, 139, 229-243.	1.7	45
30	Coupling the short-term global forecast system weather data with a variable source area hydrologic model. Environmental Modelling and Software, 2016, 86, 68-80.	1.9	15
31	Effect of Biochar on Nitrate Removal in a Pilot-Scale Denitrifying Bioreactor. Journal of Environmental Quality, 2016, 45, 762-771.	1.0	42
32	Evaluating weather observations and the Climate Forecast System Reanalysis as inputs for hydrologic modelling in the tropics. Hydrological Processes, 2016, 30, 3466-3477.	1.1	33
33	Applicability of Models to Predict Phosphorus Losses in Drained Fields: A Review. Journal of Environmental Quality, 2015, 44, 614-628.	1.0	96
34	Enhanced Nitrate and Phosphate Removal in a Denitrifying Bioreactor with Biochar. Journal of Environmental Quality, 2015, 44, 605-613.	1.0	76
35	Predicting phosphorus dynamics in complex terrains using a variable source area hydrology model. Hydrological Processes, 2015, 29, 588-601.	1.1	54
36	Phosphorus Fate, Management, and Modeling in Artificially Drained Systems. Journal of Environmental Quality, 2015, 44, 460-466.	1.0	85

ZACHARY M EASTON

#	Article	IF	CITATIONS
37	Agricultural <scp>BMP</scp> Effectiveness and Dominant Hydrological Flow Paths: Concepts and a Review. Journal of the American Water Resources Association, 2015, 51, 305-329.	1.0	51
38	Featured Collection Introduction: Synthesis and Analysis of Conservation Effects Assessment Projects for Improved Water Quality. Journal of the American Water Resources Association, 2015, 51, 302-304.	1.0	1
39	Mitigation of sulfate reduction and nitrous oxide emission in denitrifying environments with amorphous iron oxide and biochar. Ecological Engineering, 2015, 82, 605-613.	1.6	33
40	Application of <scp>SWAT</scp> with and without Variable Source Area Hydrology to a Large Watershed. Journal of the American Water Resources Association, 2014, 50, 42-56.	1.0	15
41	Using the Climate Forecast System Reanalysis as weather input data for watershed models. Hydrological Processes, 2014, 28, 5613-5623.	1.1	302
42	<scp>SWAT</scp> model: A Multiâ€Operating System, Multiâ€Platform <scp>SWAT</scp> Model Package in R. Journal of the American Water Resources Association, 2014, 50, 1349-1353.	1.0	17
43	Defining Spatial Heterogeneity of Hillslope Infiltration Characteristics Using Geostatistics, Error Modeling, and Autocorrelation Analysis. Journal of Irrigation and Drainage Engineering - ASCE, 2013, 139, 718-727.	0.6	3
44	Real-Time Forecast of Hydrologically Sensitive Areas in the Salmon Creek Watershed, New York State, Using an Online Prediction Tool. Water (Switzerland), 2013, 5, 917-944.	1.2	9
45	A Simple Processâ€Based Snowmelt Routine to Model Spatially Distributed Snow Depth and Snowmelt in the SWAT Model ¹ . Journal of the American Water Resources Association, 2012, 48, 1151-1161.	1.0	21
46	Field Test of the Variable Source Area Interpretation of the Curve Number Rainfall-Runoff Equation. Journal of Irrigation and Drainage Engineering - ASCE, 2012, 138, 235-244.	0.6	17
47	Incorporating Variable Source Area Hydrology into a Spatially Distributed Direct Runoff Model ¹ . Journal of the American Water Resources Association, 2012, 48, 43-60.	1.0	18
48	Rainfall Runoff Relationships for a Cloud Forest Watershed in Central America: Implications for Water Resource Engineering ¹ . Journal of the American Water Resources Association, 2012, 48, 1022-1031.	1.0	10
49	Dissecting the variable source area concept – Subsurface flow pathways and water mixing processes in a hillslope. Journal of Hydrology, 2012, 420-421, 125-141.	2.3	60
50	Development and application of a physically based landscape water balance in the SWAT model. Hydrological Processes, 2011, 25, 915-925.	1.1	99
51	A simple concept for calibrating runoff thresholds in quasiâ€distributed variable source area watershed models. Hydrological Processes, 2011, 25, 3131-3143.	1.1	22
52	A Simple Metric to Predict Stream Water Quality from Storm Runoff in an Urban Watershed. Journal of Environmental Quality, 2010, 39, 1338-1348.	1.0	1
53	Predicting discharge and sediment for the Abay (Blue Nile) with a simple model. Hydrological Processes, 2009, 23, 3728-3737.	1.1	87
54	A simple semiâ€distributed water balance model for the Ethiopian highlands. Hydrological Processes, 2009, 23, 3718-3727.	1.1	37

ZACHARY M EASTON

#	Article	IF	CITATIONS
55	Modelling variable source area dynamics in a CEAP watershed. Ecohydrology, 2009, 2, 337-349.	1.1	28
56	Rainfallâ€discharge relationships for a monsoonal climate in the Ethiopian highlands. Hydrological Processes, 2008, 22, 1059-1067.	1.1	81
57	Determining Phosphorus Loading Rates Based on Land Use in an Urban Watershed. ACS Symposium Series, 2008, , 43-62.	0.5	8
58	Re-conceptualizing the soil and water assessment tool (SWAT) model to predict runoff from variable source areas. Journal of Hydrology, 2008, 348, 279-291.	2.3	239
59	Determining Nitrogen Loading Rates Based on Land Use in an Urban Watershed. ACS Symposium Series, 2008, , 19-42.	0.5	8
60	Combined Monitoring and Modeling Indicate the Most Effective Agricultural Best Management Practices. Journal of Environmental Quality, 2008, 37, 1798-1809.	1.0	51
61	Hydrologic assessment of an urban variable source watershed in the northeast United States. Water Resources Research, 2007, 43, .	1.7	57
62	Identifying dissolved phosphorus source areas and predicting transport from an urban watershed using distributed hydrologic modeling. Water Resources Research, 2007, 43, .	1.7	25
63	Incorporating variable source area hydrology into a curveâ€numberâ€based watershed model. Hydrological Processes, 2007, 21, 3420-3430.	1.1	148
64	Fertilizer Source Effect on Ground and Surface Water Quality in Drainage from Turfgrass. Journal of Environmental Quality, 2004, 33, 645.	1.0	22
65	Fertilizer Source Effect on Ground and Surface Water Quality in Drainage from Turfgrass. Journal of Environmental Quality, 2004, 33, 645-655.	1.0	109