
Toshio Nishi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1435605/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Morphological characterization of the novel fine structure of the PMMA/PVDF blend. Polymer Journal, 2022, 54, 783-792.	1.3	4
2	Analytical methods to derive the elastic modulus of soft and adhesive materials from atomic force microcopy force measurements. Journal of Polymer Science, Part B: Polymer Physics, 2019, 57, 1279-1286.	2.4	25
3	Thermo-mechanical model of rubber network with transient non-bonded interaction concept for multi-physics design. Polymer, 2019, 162, 139-155.	1.8	3
4	Nitrile rubber/sliding graft copolymer damping material with significantly improved strength and damping performance. Journal of Applied Polymer Science, 2019, 136, 47188.	1.3	14
5	Heterogeneous Structure in Elastomers and Polymer Nanotechnology :. Nippon Gomu Kyokaishi, 2019, 92, 457-464.	0.0	0
6	Heterogeneous Structure in Elastomers and Polymer Nanotechnology :. Nippon Gomu Kyokaishi, 2019, 92, 38-44.	0.0	0
7	Heterogeneous Structure in Elastomers and Polymer Nanotechnology :. Nippon Gomu Kyokaishi, 2019, 92, 188-194.	0.0	0
8	Development of high damping acrylic rubber/sliding graft copolymer composites. RSC Advances, 2018, 8, 36172-36180.	1.7	11
9	Novel Slide-Ring Material/Natural Rubber Composites with High Damping Property. Scientific Reports, 2016, 6, 22810.	1.6	39
10	Separated-structured all-organic dielectric elastomer with large actuation strain under ultra-low voltage and high mechanical strength. Journal of Materials Chemistry A, 2015, 3, 1483-1491.	5.2	39
11	Tailoring Dielectric and Actuated Properties of Elastomer Composites by Bioinspired Poly(dopamine) Encapsulated Graphene Oxide. ACS Applied Materials & Interfaces, 2015, 7, 10755-10762.	4.0	105
12	Natural rubber/nitrile butadiene rubber/hindered phenol composites with high-damping properties. International Journal of Smart and Nano Materials, 2015, 6, 239-250.	2.0	22
13	Miscibility, intramolecular specific interactions and mechanical properties of a DGEBA based epoxy resin toughened with a sliding graft copolymer. Chinese Journal of Polymer Science (English Edition), 2015, 33, 433-443.	2.0	15
14	Largely improved electromechanical properties of thermoplastic polyurethane dielectric elastomer by carbon nanospheres. RSC Advances, 2015, 5, 23719-23726.	1.7	36
15	Largely improved actuation strain at low electric field of dielectric elastomer by combining disrupting hydrogen bonds with ionic conductivity. Journal of Materials Chemistry C, 2014, 2, 8388-8397.	2.7	71
16	Enhanced magnetic property of Fe3O4 nano-particles/elastomeric composite membrane by using electrospinning and in-situ crosslinking technique. Journal of Polymer Research, 2014, 21, 1.	1.2	5
17	High performance dielectric composites by latex compounding of graphene oxide-encapsulated carbon nanosphere hybrids with XNBR. Journal of Materials Chemistry A, 2014, 2, 11144-11154.	5.2	78
18	Dramatically improved dielectric properties of polymer composites by controlling the alignment of carbon nanotubes in matrix. RSC Advances, 2014, 4, 4543-4551.	1.7	63

#	Article	IF	CITATIONS
19	Graphene encapsulated rubber latex composites with high dielectric constant, low dielectric loss and low percolation threshold. Journal of Colloid and Interface Science, 2014, 430, 249-256.	5.0	79
20	Highly toughened polylactide with novel sliding graft copolymer by in situ reactive compatibilization, crosslinking and chain extension. Polymer, 2014, 55, 4313-4323.	1.8	87
21	Atomic Force Microscopy Nanomechanics Visualizes Molecular Diffusion and Microstructure at an Interface. ACS Macro Letters, 2013, 2, 757-760.	2.3	44
22	Nanorheological Mapping of Rubbers by Atomic Force Microscopy. Macromolecules, 2013, 46, 1916-1922.	2.2	61
23	Self-assembled porous templates allow pattern transfer to poly(dimethyl siloxane) sheets through surface wrinkling. Polymer Journal, 2012, 44, 573-578.	1.3	16
24	Quantitative Nanomechanical Investigation on Deformation of Poly(lactic acid). Macromolecules, 2012, 45, 8770-8779.	2.2	51
25	Viscoelasticity Analysis of Elastomer Blend Using Force Measurements of Atomic Force Microscope. Kobunshi Ronbunshu, 2012, 69, 435-442.	0.2	3
26	Characterization of morphology and mechanical properties of block copolymers using atomic force microscopy: Effects of processing conditions. Polymer, 2012, 53, 1960-1965.	1.8	31
27	Nanomechanical Mapping on the Deformed Poly(ε-caprolactone). Macromolecules, 2011, 44, 1779-1782.	2.2	19
28	Characterization of Surface Viscoelasticity and Energy Dissipation in a Polymer Film by Atomic Force Microscopy. Macromolecules, 2011, 44, 8693-8697.	2.2	44
29	Novel Viscoelasticity Measurement Method Based on AFM Force Mapping and JKR Analysis. Nippon Gomu Kyokaishi, 2011, 84, 171-175.	0.0	3
30	Structure and dynamics of polymeric materials in nano-scale. Chinese Journal of Polymer Science (English Edition), 2011, 29, 43-52.	2.0	0
31	Visualization of nanomechanical mapping on polymer nanocomposites by AFM force measurement. Polymer, 2010, 51, 2455-2459.	1.8	58
32	Production of a cellular structure in carbon nanotube/natural rubber composites revealed by nanomechanical mapping. Carbon, 2010, 48, 3708-3714.	5.4	50
33	Investigation of Reactive Polymerâ^'Polymer Interface Using Nanomechanical Mapping. Macromolecules, 2010, 43, 5521-5523.	2.2	39
34	Transmission Electron Microtomography and Polymer Nanostructures. Macromolecules, 2010, 43, 1675-1688.	2.2	170
35	True Surface Topography and Nanomechanical Mapping Measurements on Block Copolymers with Atomic Force Microscopy. Macromolecules, 2010, 43, 3169-3172.	2.2	47
36	Investigation of True Surface Morphology and Nanomechanical Properties of Poly(styrene- <i>b</i> -ethylene- <i>co</i> -butylene- <i>b</i> -styrene) Using Nanomechanical Mapping: Effects of Composition. Macromolecules, 2010, 43, 9049-9055.	2.2	42

#	Article	IF	CITATIONS
37	Coarse-grained Molecular Dynamics Simulation Study of Nanorheology and Nanotribology. Nihon Reoroji Gakkaishi, 2009, 37, 105-111.	0.2	4
38	What is Seen by Atomic Force Microscopy. Journal of the Adhesion Society of Japan, 2009, 45, 150-157.	0.0	3
39	Young's Modulus Mapping on Hair Cross-Section by Atomic Force Microscopy. Composite Interfaces, 2009, 16, 1-12.	1.3	12
40	Dynamic Nanofishing of Single Polymer Chains. Rubber Chemistry and Technology, 2009, 82, 271-282.	0.6	0
41	Nanorheological Investigation of Polymeric Surfaces by Atomic Force Microscopy. Composite Interfaces, 2009, 16, 13-25.	1.3	16
42	RECENT PROGRESS OF NANO-MECHANICAL MAPPING. Chinese Journal of Polymer Science (English) Tj ETQq0 0 0	rgBT /Ov	erlock 10 Tf 5
43	Study on thermal expansion in injectionâ€molded isotactic polypropylene and thermoplastic elastomer blends. Journal of Applied Polymer Science, 2008, 107, 2930-2943.	1.3	16
44	Realâ€ŧime morphological observation of isotactic polypropylene and poly(ethyleneâ€≺i>coâ€octene) rubber blend during temperature change. Journal of Applied Polymer Science, 2008, 108, 1857-1864.	1.3	3
45	Three-Dimensional Visualization of a Single Block Copolymer in Lamellar Nanodomains. Macromolecules, 2008, 41, 4845-4849.	2.2	17
46	Pulsed NMR Studies on Long-Term Crystallization Behavior and Melting Process of Natural Rubber under Elongation. Rubber Chemistry and Technology, 2008, 81, 110-120.	0.6	3
47	Recent Development of Nanomechanical Property Measurement. Nihon Reoroji Gakkaishi, 2008, 36, 99-106.	0.2	10
48	Evaluation of Surface Properties of Polymeric Materials by Atomic Force Microscopy. Journal of the Japan Society of Colour Material, 2008, 81, 354-360.	0.0	0
49	Recent Developments in Rubber Research Using Atomic Force Microscopy. , 2008, , .		0
50	Title is missing!. Chinese Journal of Polymer Science (English Edition), 2007, 25, 35.	2.0	24
51	Force Spectroscopy on a Single Polymer Chain. Kobunshi Ronbunshu, 2007, 64, 441-451.	0.2	3
52	Study of Spherulitic Structures by Analyzing the Spherulitic Growth Rate of the Other Component in Binary Crystalline Polymer Blends. Macromolecules, 2007, 40, 8726-8730.	2.2	49
53	Various Crystalline Morphology of Poly(butylene Succinate-co-butylene Adipate) in Its Miscible Blends with Poly(vinylidene Fluoride). Journal of Physical Chemistry B, 2007, 111, 2783-2789.	1.2	68
54	Three-Dimensional Structure of a Nanocomposite Material Consisting of Two Kinds of Nanofillers and Rubbery Matrix Studied by Transmission Electron Microtomography. Macromolecules, 2007, 40, 6758-6764.	2.2	73

#	Article	IF	CITATIONS
55	Local lamellar structures in banded spherulites analyzed by three-dimensional electron tomography. Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 1122-1125.	2.4	27
56	Three-Dimensional Imaging in Polymer Science: Its Application to Block Copolymer Morphologies and Rubber Composites. Polymer Journal, 2007, 39, 749-758.	1.3	33
57	ãfžãf«ãfã,¹ã,±ãf¼ãf«ã•ã,‰è¦‹ãŸé«~å^†åã₽æ§‹é€ã¤ç‰©æ€§. Seikei-Kakou, 2007, 19, 468-472.	0.0	0
58	Nanotribology on Polymer Blend Surface by Atomic Force Microscopy. Polymer Journal, 2006, 38, 31-36.	1.3	10
59	Study of the Glass Transition Temperature of Polymer Surface by Coarse-Grained Molecular Dynamics Simulation. Macromolecules, 2006, 39, 6233-6237.	2.2	132
60	Direct Observation of Twisted Grain Boundary in a Block Copolymer Lamellar Nanostructureâ€. Macromolecules, 2006, 39, 5815-5819.	2.2	47
61	Dynamic Force Spectroscopy on a Single Polymer Chain. Macromolecules, 2006, 39, 5921-5925.	2.2	24
62	The Observation of Interpenetrated Spherulites by Polarized Scanning Near-field Optical Microscopy. Kobunshi Ronbunshu, 2006, 63, 774-780.	0.2	0
63	Three-Dimensional Observations of Grain Boundary Morphologies in a Cylinder-Forming Block Copolymer. Macromolecular Symposia, 2006, 245-246, 170-174.	0.4	23
64	A "ladder―Morphology in an ABC Triblock Copolymer. Macromolecular Symposia, 2006, 242, 80-86.	0.4	21
65	Non-Affine Deformation of Rubber and Single Polymer Chain Deformation. Nippon Gomu Kyokaishi, 2006, 79, 466-471.	0.0	9
66	Study on Three-dimensional Structures in Injection-molded iPP/Poly(ethylene-co-octene) by Transmission Electron Microtomography. E-Journal of Soft Materials, 2006, 2, 56-61.	2.0	0
67	Nanoscience of single polymer chains revealed by nanofishing. Chemical Record, 2006, 6, 249-258.	2.9	17
68	Spatial arrangement of metal nanoparticles supported by porous polymer substrates studied by transmission electron microtomography. Chemical Record, 2006, 6, 267-274.	2.9	19
69	Single polymer chain rubber elasticity investigated by atomic force microscopy. Polymer, 2006, 47, 2505-2510.	1.8	41
70	Three-dimensional structure of a polymer/clay nanocomposite characterized by transmission electron microtomography. Composite Interfaces, 2006, 13, 589-603.	1.3	39
71	Nanomechanical Property Analysis of Polymer Surfaces by Atomic Force Microscopy. Hyomen Kagaku, 2006, 27, 530-534.	0.0	7
72	Nanorheology Mapping by Atomic Force Microscopy. Kobunshi Ronbunshu, 2005, 62, 476-487.	0.2	13

#	Article	IF	CITATIONS
73	Novel Structural Analyses of Polymeric Materials by Three-Dimensional Microscopy. Kobunshi Ronbunshu, 2005, 62, 488-501.	0.2	5
74	Structural Analysis of Soft Matters Using Three Dimensional Virtual Imaging Experiments. Kobunshi Ronbunshu, 2005, 62, 502-507.	0.2	1
75	Improvement of 3D Images by Use of Prism-shaped Sections. Kobunshi Ronbunshu, 2005, 62, 508-513.	0.2	1
76	Anisotropic thermal expansion in polypropylene/poly(ethylene-co-octene) binary blends: influence of arrays of elastomer domains. Polymer, 2005, 46, 4899-4908.	1.8	39
77	Miscibility and crystallization behavior of biodegradable blends of two aliphatic polyesters. Poly(3-hydroxybutyrate-co-hydroxyvalerate) and poly(Îμ-caprolactone). Polymer, 2005, 46, 11814-11819.	1.8	80
78	Atomic Force Microscopy of Mechanical Property of Natural Rubber. Japanese Journal of Applied Physics, 2005, 44, 5393-5396.	0.8	35
79	Nanorheological Analysis of Polymer Surfaces by Atomic Force Microscopy. Japanese Journal of Applied Physics, 2005, 44, 5425-5429.	0.8	54
80	Reduction of anisotropic image resolution in transmission electron microtomography by use of quadrangular prism-shaped section. Microscopy (Oxford, England), 2005, 54, 437-444.	0.7	27
81	Dual-Axis Electron Tomography for Three-Dimensional Observations of Polymeric Nanostructures. Macromolecules, 2005, 38, 10226-10233.	2.2	77
82	Nanoprocessing and Nanofabrication of a Structured Polymer Film by the Focused-Ion-Beam Technique. Macromolecules, 2005, 38, 3048-3050.	2.2	40
83	Spherulitic morphology and growth of poly(vinylidene) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 347 Td (flu 4355-4360.	uoride)/poly 1.8	y(3-hydroxyb 41
84	Miscibility and crystallization of poly(ethylene succinate)/poly(vinyl phenol) blends. Polymer, 2004, 45, 4515-4521.	1.8	67
85	Penetration of PBSU spherulite into P(VDC-VC) spherulite observed with microbeam- and macrobeam-SAXS/WAXS measurements. Polymer, 2004, 45, 8593-8601.	1.8	12
86	Co-existing handednesses of lamella twisting in one spherulite observed with scanning microbeam wide-angle X-ray scattering. Polymer, 2004, 45, 8299-8302.	1.8	30
87	Nonisothermal Crystallization Kinetics of Poly(butylene succinate) and Poly(ethylene succinate). Polymer Journal, 2004, 36, 642-646.	1.3	81
88	Coordination Polymerization of Dienes, Allenes, and Methylenecycloalkanes. , 2004, , 115-167.		14
89	Structure and Properties of Biodegradable Polymer-Based Blends. Macromolecular Symposia, 2004, 216, 255-264.	0.4	10
90	Study of Nanorheology and Nanotribology by Coarse-grained Molecular Dynamics Simulation. Polymer Journal, 2004, 36, 265-269.	1.3	17

#	Article	IF	CITATIONS
91	Anisotropy in Thermal Expansion in Rubber Toughened Polypropylene —Injection Molded System—. Polymer Journal, 2004, 36, 563-566.	1.3	10
92	Poly(butylene succinate)/poly(vinyl phenol) blends. Part 1. Miscibility and crystallization. Polymer, 2003, 44, 8111-8117.	1.8	69
93	Investigation of crystallization behavior in dynamically vulcanized EPDM-nylon copolymer blends. Journal of Applied Polymer Science, 2003, 90, 824-829.	1.3	27
94	Observation of morphology in EPDM/nylon copolymer thermoplastic vulcanizates by atomic force microscopy. Journal of Applied Polymer Science, 2003, 90, 1242-1248.	1.3	16
95	Miscibility and crystallization behaviour of biodegradable blends of two aliphatic polyesters. Poly(3-hydroxybutyrate-co-hydroxyvalerate) and poly(butylene succinate) blends. Polymer, 2003, 44, 7519-7527.	1.8	90
96	Miscibility and crystallization behavior of biodegradable blends of two aliphatic polyesters. Poly(butylene succinate) and Poly(ε-caprolactone). Polymer, 2003, 44, 7749-7756.	1.8	92
97	DSC and TMDSC study of melting behaviour of poly(butylene succinate) and poly(ethylene succinate). Polymer, 2003, 44, 7781-7785.	1.8	196
98	Miscibility and crystallization in crystalline/crystalline blends of poly(butylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf	50,462 To	l (succinate)/
99	Poly(hydroxybutyrate)/poly(butylene succinate) blends: miscibility and nonisothermal crystallization. Polymer, 2003, 44, 2503-2508.	1.8	145
100	Miscibility and crystallization of poly(ethylene oxide) and poly(ε-caprolactone) blends. Polymer, 2003, 44, 3101-3106.	1.8	94
101	Melting behaviour of poly(butylene succinate) in miscible blends with poly(ethylene oxide). Polymer, 2003, 44, 3095-3099.	1.8	103
102	Crystallization behaviour of biodegradable poly(ethylene succinate) from the amorphous state. Polymer, 2003, 44, 5429-5437.	1.8	120
103	Spatial distribution of lamella structure in PCL/PVB band spherulite investigated with microbeam small- and wide-angle X-ray scattering. Polymer, 2003, 44, 6397-6405.	1.8	42
104	Evidence for the formation of interpenetrated spherulites in poly(butylene succinate-co-butylene) Tj ETQq0 0 0 r 6657-6661.	gBT /Overl 1.8	ock 10 Tf 50 55
105	Nanorheology measurement on a single polymer chain. Applied Physics Letters, 2002, 81, 724-726.	1.5	34
106	Miscibility and Crystallization Behavior of Crystalline/Crystalline Polymer Blends. Poly(ester) Tj ETQq0 0 0 rgBT /C)verlgck 1() Tf 50 142 T

107	Unique Morphology of Poly(ethylene succinate)/Poly(ethylene oxide) Blends. Macromolecules, 2002, 35, 8251-8254.	2.2	126
108	Application of styrene-acrylonitrile random copolymer-polyarylate block copolymer as reactive compatibilizer for polyamide and acrylonitrile-butadiene-styrene blends. Journal of Applied Polymer Science, 2002, 83, 2300-2313.	1.3	9

Тозніо Nishi

#	Article	IF	CITATIONS
109	Formation of interpenetrated spherulites based on miscible crystalline polymer blends. Macromolecular Symposia, 2001, 175, 209-214.	0.4	7
110	Observation of Interpenetrated Spherulites by Confocal Laser Scanning Microscopy. Polymer Journal, 2001, 33, 371-373.	1.3	16
111	Phase morphologies and mechanical properties of high-impact polystyrene (HIPS) and polycarbonate blends compatibilized with polystyrene and polyarylate block copolymer. Journal of Applied Polymer Science, 2001, 80, 2347-2360.	1.3	26
112	Phase morphology of polystyrene-polyarylate block copolymer/polycarbonate blends and their application to disk substrates. Journal of Applied Polymer Science, 2001, 82, 2566-2582.	1.3	7
113	Direct Observation of the Interpenetrated Spherulites by Atomic Force Microscopy. Polymer Journal, 2000, 32, 900-903.	1.3	33
114	Interpenetrated Spherulites of Poly(butylene succinate)/Poly(vinylidene chloride-co-vinyl chloride) Blends. An Optical Microscopic Study. Polymer Journal, 2000, 32, 683-687.	1.3	51
115	Synthesis of styrene-acrylonitrile random copolymers (SAN) and polyarylate block copolymers and the control of their mechanical properties by morphology generation. , 2000, 38, 127-137.		7
116	A chain geometry prediction of polystyrene and polyarylate block copolymer by a kinetic simulation model. Journal of Polymer Science Part A, 2000, 38, 299-309.	2.5	8
117	Optical properties of polystyrene and polyarylate block copolymer and their control by morphology generation. Journal of Applied Polymer Science, 2000, 78, 953-961.	1.3	8
118	Nanotribology of polymer blends. Journal of Applied Physics, 2000, 87, 2803-2807.	1.1	27
119	Self-Assembling Dendritic Supramolecule of Molecular Nanotubes and Starpolymers. Langmuir, 2000, 16, 10278-10280.	1.6	21
120	Visualized Polymers. Patterns Formed by Polymeric Systems. II. Observation of Supramolecular Structures of Molecular Nanotubes and Starpolymers by Scanning Tunneling Microscopy Kobunshi Ronbunshu, 1999, 56, 833-836.	0.2	1
121	A novel process for synthesizing polystyrene and polyarylate block copolymers utilizing telechelic polystyrene. Journal of Polymer Science Part A, 1998, 36, 2839-2847.	2.5	16
122	Morphology and electrical properties of carbon black-filled poly(?-caprolactone)/poly(vinyl butyral) blends. Journal of Applied Polymer Science, 1998, 69, 193-199.	1.3	11
123	Miscibility and Crystallization Behavior of Poly(butylene succinate) and Poly(vinylidene fluoride) Blends. Polymer Journal, 1998, 30, 327-339.	1.3	96
124	Crystallization Kinetics and Morphology in Miscible Blends of Two Crystalline Polymers. Polymer Journal, 1998, 30, 780-789.	1.3	76
125	Observation of Reconstructed Structure of Au(111) Deposited on Mica by Scanning Tunneling Microscopy. Japanese Journal of Applied Physics, 1997, 36, 326-327.	0.8	3
126	Nanorheology of Polymer Blends Investigated by Atomic Force Microscopy. Japanese Journal of Applied Physics, 1997, 36, 3850-3854.	0.8	57

#	Article	IF	CITATIONS
127	Transesterification and ringed spherulites in blends of butylene terephthalate-ϵ-caprolactone copolyester with poly(ϵ-caprolactone). Polymer, 1997, 38, 1131-1138.	1.8	16
128	Miscibility in blends of poly(3-hydroxybutyrate) and poly(vinylidene chloride-co-acrylonitrile). Journal of Polymer Science, Part B: Polymer Physics, 1997, 35, 2645-2652.	2.4	26
129	Conductive-filler-filled poly(?-caprolactone)/poly(vinyl butyral) blends. I. Crystallization behavior and morphology. Journal of Applied Polymer Science, 1997, 64, 797-802.	1.3	13
130	Conductive-filler-filled poly(?-caprolactone)/poly(vinyl butyral) blends. II. Electric properties (positive) Tj ETQq0 0 (D rgBT /Ov E3	verlock 10 Tf
131	Volume Phase Transition Process and Spin Diffusion in Heterogeneous Structure of Acrylamide Gels Studied by Pulsed NMR. Polymer Journal, 1996, 28, 169-176.	1.3	15
132	Miscibility and spherulites in blends of poly(ϵ-caprolactone) with ethylene terephthalate-caprolactone copolyester. Polymer, 1996, 37, 1575-1581.	1.8	32
133	Interaction of Ga Adsorbates with Dangling Bonds on the Hydrogen Terminated Si(100) Surface. Japanese Journal of Applied Physics, 1996, 35, L1085-L1088.	0.8	130
134	Direct Observation of Poly(macromonomer) by Scanning Tunneling Microscopy*1. Japanese Journal of Applied Physics, 1996, 35, 2280-2283.	0.8	7
135	Study of Initial Stage of Molecular Adsorption on Si(100) by Scanning Tunneling Microscopy. Japanese Journal of Applied Physics, 1996, 35, L1360-L1363.	0.8	3
136	Direct Observations of the Structure of a Main-Chain Thermotropic Liquid-Crystalline Homopolyester by Scanning Tunneling Microscopy. Japanese Journal of Applied Physics, 1996, 35, 6166-6171.	0.8	0
137	Observation of Vacuum Deposited Thin Films of Topochemically Photopolymerizable Conjugated Aromatic Compounds by Scanning Tunneling Microscopy Hyomen Kagaku, 1996, 17, 379-386.	0.0	1
138	Temporal change of the volume of gels in polymer solution. , 1994, , 221-224.		0
139	Pattern formation in polymer systems and its dynamics. , 1994, , 1061-1068.		0
140	Small-angle x-ray scattering and pulsed NMR studies of polyurethane interpenetrating polymer networks. Macromolecules, 1993, 26, 1922-1929.	2.2	16
141	Combined collapse-swelling behavior of acrylamide gel in polymeric solution. Physical Review Letters, 1993, 71, 2497-2500.	2.9	5
142	Morphological and kinetic evolution of surface patterns in gels during the swelling process: Evidence of dynamic pattern ordering. Physical Review Letters, 1992, 68, 2794-2797.	2.9	78
143	Morphology and Physical Properties of Three Component Incompatible Polymer Alloys Kobunshi Ronbunshu, 1992, 49, 373-382.	0.2	8
144	New type of pattern formation in polymer mixtures caused by competition between phase separation and chemical reaction. Macromolecules, 1992, 25, 4453-4456.	2.2	39

#	Article	IF	CITATIONS
145	MORPHOLOGY AND PHYSICAL PROPERTIES OF POLYMER ALLOYS. , 1992, , 325-330.		1
146	Transesterification in polymer blends including polycarbonate at high temperatures. Makromolekulare Chemie Macromolecular Symposia, 1991, 51, 29-39.	0.6	9
147	A New Method for Direct Determination of the Time Sequence of Nucleation from Spatial Pattern Divided by Spherulites. Japanese Journal of Applied Physics, 1991, 30, L1310-L1313.	0.8	1
148	Transition from metastability to instability in a binary-liquid mixture. Physical Review Letters, 1990, 65, 3136-3139.	2.9	69
149	Dynamics of ferroelectric phase transition in vinylidene fluoride/trifluoroethylene (VF2/F3E) copolymers. I. Acoustic study. Journal of Chemical Physics, 1989, 90, 6730-6739.	1.2	18
150	Dynamics of ferroelectric phase transition in vinylidene fluoride/trifluoroethylene (VF2/F3E) copolymers. II. Proton nuclear magnetic resonance study. Journal of Chemical Physics, 1989, 90, 6740-6748.	1.2	14
151	Local phase separation at the growth front of a polymer spherulite during crystallization and nonlinear spherulitic growth in a polymer mixture with a phase diagram. Physical Review A, 1989, 39, 783-794.	1.0	140
152	Digital image analysis of droplet patterns in polymer systems: Point pattern. Journal of Applied Physics, 1989, 65, 4480-4495.	1.1	53
153	Effect of crystallization condition on the ferroelectric phase transition in vinylidene fluoride/trifluoroethylene (VF2/F3E) copolymers. Macromolecules, 1988, 21, 2469-2474.	2.2	54
154	Study of chemical gelation dynamics of acrylamide in water by realâ€ŧime pulsed nuclear magnetic resonance measurement. Journal of Chemical Physics, 1988, 89, 3363-3372.	1.2	36
155	Initial Stage of Phase Separation in a Binary Mixture of Poly(Vinyl Methyl Ether) and Water. Japanese Journal of Applied Physics, 1988, 27, L1783-L1786.	0.8	11
156	Anomalous Phase Separation Behavior in a Binary Mixture of Poly(Vinyl Methyl Ether) and Water under Deep Quench Conditions. Japanese Journal of Applied Physics, 1988, 27, L1787-L1790.	0.8	24
157	Digital image analysis of polymer blends morphology. Makromolekulare Chemie Macromolecular Symposia, 1988, 16, 91-102.	0.6	3
158	FUNDAMENTAL STUDIES ON THE INTERACTION BETWEEN MOISTURE AND TEXTILES. Journal of Fiber Science and Technology, 1988, 44, 428-438.	0.0	5
159	Frequency Dependent Conductivity in Lightly Doped Polypyrrole. Japanese Journal of Applied Physics, 1987, 26, L1401-L1403.	0.8	21
160	Structure and Electronic Properties of Polyaniline. Japanese Journal of Applied Physics, 1987, 26, L1803-L1805.	0.8	3
161	Frequency-Dependent Conductivity in Polyaniline. Japanese Journal of Applied Physics, 1987, 26, L1800-L1802.	0.8	9
162	Direct determination of the probability distribution function of concentration in polymer mixtures undergoing phase separation. Physical Review Letters, 1987, 59, 692-695.	2.9	55

#	Article	IF	CITATIONS
163	Intermolecular polarization transfer study of polymer blend compatibility. Journal of Polymer Science, Part C: Polymer Letters, 1987, 25, 61-65.	0.7	39
164	Digital Image Analysis of High Order Structure in Polymer Systems. Nihon Reoroji Gakkaishi, 1987, 15, 5-18.	0.2	0
165	Study of crystallization process of polymer from melt by a realâ€time pulsed NMR measurement. Journal of Chemical Physics, 1986, 85, 6197-6209.	1.2	80
166	Application of digital image analysis to pattern formation in polymer systems. Journal of Applied Physics, 1986, 59, 3627-3643.	1.1	134
167	Spin diffusion in block copolymers as studied by pulsed NMR. Physical Review B, 1986, 33, 32-42.	1.1	70
168	Application of digital image analysis to the study of highâ€order structure of polymers. Journal of Applied Physics, 1986, 59, 653-655.	1.1	35
169	Study of banded structure in polymer spherulites by polarized microâ€Raman spectroscopy. Applied Physics Letters, 1986, 48, 393-395.	1.5	27
170	Realâ€ŧime pulsed nuclear magnetic resonance measurement system for the study of nonequilibrium phenomena in polymers. Journal of Applied Physics, 1986, 60, 1306-1309.	1.1	27
171	Realâ€ŧime measurement of crystallization process of polymers by pulsed nuclear magnetic resonance. Journal of Applied Physics, 1986, 59, 1488-1492.	1.1	15
172	New instrument for measuring complex adiabatic compressibility and adiabatic pressureâ€induced temperature variation of liquids in the frequency range from 0.5 Hz to 2 kHz. Review of Scientific Instruments, 1986, 57, 2593-2598.	0.6	4
173	Acousitc anomaly of critical binary mixtures of nitrobenzene/n-heptane and nitroethane/3-methylpentane and the universality of acoustic anomaly of critical fluids. Chemical Physics, 1985, 94, 281-290.	0.9	13
174	Study of block copolymer interface by pulsed NMR. Journal of Chemical Physics, 1985, 82, 4326-4331.	1.2	101
175	New Types of Phase Separation Behavior during the Crystallization Process in Polymer Blends with Phase Diagram. Physical Review Letters, 1985, 55, 1102-1105.	2.9	167
176	Polymer composites Hyomen Kagaku, 1985, 6, 356-362.	0.0	0
177	Thermodynamic Aspects of Polymer Mixtures. Critical Reviews in Solid State and Materials Sciences, 1984, 12, 329-353.	6.8	13
178	Universality in Critical Anomaly of Acoustic Properties of Binary Mixtures. Japanese Journal of Applied Physics, 1984, 23, 60.	0.8	2
179	Vertical distribution of components in a polymer blend with the aid of the secondary ion mass spectroscopy. Journal of Polymer Science, Polymer Letters Edition, 1983, 21, 487-494.	0.4	15
180	Pulsed NMR studies of elastomers under large deformation. Journal of Macromolecular Science - Physics, 1981, 19, 445-457.	0.4	26

#	Article	IF	CITATIONS
181	Experimental aspects of compatible polymer mixtures. Journal of Macromolecular Science - Physics, 1980, 17, 517-542.	0.4	42
182	Multiple-Pulse Nuclear Magnetic Resonance Experiments on Some Crystalline Polymers. Polymer Journal, 1972, 3, 448-462.	1.3	66
183	Grüneisen constant and thermal properties of crystalline and glassy polymers. Journal of Polymer Science Part A-2 Polymer Physics, 1969, 7, 201-208.	0.8	75
184	Relaxations of selenium in crystalline and amorphous states. Journal of Polymer Science Part A-1, Polymer Chemistry, 1968, 6, 1597-1604.	0.7	2
185	Dielectric relaxation in the paracrystalline phase in polyacrylonitrile. Journal of Polymer Science Part A-2 Polymer Physics, 1967, 5, 165-177.	0.8	44
186	Relaxations in crystalline, paracrystalline, and glassy phases in polymers. Journal of Polymer Science Part C Polymer Symposia, 1967, 15, 101-108.	0.1	17