
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1435599/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Deciphering glutamate and aspartate metabolism to improve production of succinate in Escherichia coli. Journal of the Taiwan Institute of Chemical Engineers, 2022, 136, 104417.	5.3	6
2	Diabetes-induced cardiomyopathy is ameliorated by heat-killed Lactobacillus reuteri GMNL-263 in diabetic rats via the repression of the toll-like receptor 4 pathway. European Journal of Nutrition, 2021, 60, 3211-3223.	3.9	16
3	Understanding and harnessing the glutamate metabolism in Escherichia coli. Journal of the Taiwan Institute of Chemical Engineers, 2021, 121, 115-121.	5.3	8
4	Biocatalytic Conversion of Short-Chain Fatty Acids to Corresponding Alcohols in Escherichia coli. Processes, 2021, 9, 973.	2.8	1
5	Production of Succinic Acid from Amino Acids in <i>Escherichia coli</i> . Journal of Agricultural and Food Chemistry, 2021, 69, 8172-8178.	5.2	12
6	Editorial: Technological Advances Improving Recombinant Protein Production in Bacteria. Frontiers in Microbiology, 2021, 12, 729472.	3.5	0
7	A Strategy to Improve Production of Recombinant Proteins in <i>Escherichia coli</i> Based on a Glucose–Glycerol Mixture and Glutamate. Journal of Agricultural and Food Chemistry, 2020, 68, 8883-8889.	5.2	13
8	Rewiring of glycerol metabolism in Escherichia coli for effective production of recombinant proteins. Biotechnology for Biofuels, 2020, 13, 205.	6.2	15
9	A theranostic approach to breast cancer by a quantum dots- and magnetic nanoparticles-conjugated peptide. Journal of the Taiwan Institute of Chemical Engineers, 2019, 97, 88-95.	5.3	9
10	Selective delivery of curcumin to HER2/neu-overexpressing tumor cells using nanoscale oil body. Journal of the Taiwan Institute of Chemical Engineers, 2019, 99, 38-44.	5.3	5
11	A simple strategy to effectively produce d-lactate in crude glycerol-utilizing Escherichia coli. Biotechnology for Biofuels, 2019, 12, 273.	6.2	9
12	Taiwanin E Induces Cell Cycle Arrest and Apoptosis in Arecoline/4-NQO-Induced Oral Cancer Cells Through Modulation of the ERK Signaling Pathway. Frontiers in Oncology, 2019, 9, 1309.	2.8	6
13	Biorefining of protein waste for production of sustainable fuels and chemicals. Biotechnology for Biofuels, 2018, 11, 256.	6.2	58
14	Development of Nanoscale Oil Bodies for Targeted Treatment of Lung Cancer. Journal of Agricultural and Food Chemistry, 2018, 66, 9438-9445.	5.2	12
15	Synthetic Consortium of <i>Escherichia coli</i> for <i>n</i> Butanol Production by Fermentation of the Glucose–Xylose Mixture. Journal of Agricultural and Food Chemistry, 2017, 65, 10040-10047.	5.2	37
16	Effective production of n -butanol in Escherichia coli utilizing the glucose–glycerol mixture. Journal of the Taiwan Institute of Chemical Engineers, 2017, 81, 134-139.	5.3	13
17	Enhanced integration of large DNA into <i>E. coli</i> chromosome by CRISPR/Cas9. Biotechnology and Bioengineering, 2017, 114, 172-183.	3.3	87
18	Metabolic engineering of Escherichia coli for production of n-butanol from crude glycerol. Biotechnology for Biofuels, 2017, 10, 173.	6.2	44

#	Article	IF	CITATIONS
19	Administration of <i>Bacillus Amyloliquefaciens </i> and <i>Saccharomyces Cerevisiae </i> as Direct-Fed Microbials Improves Intestinal Microflora and Morphology in Broiler Chickens. Journal of Poultry Science, 2017, 54, 134-141.	1.6	13
20	Development of Alginate Microspheres Containing Chuanxiong for Oral Administration to Adult Zebrafish. BioMed Research International, 2016, 2016, 1-7.	1.9	8
21	Systematic engineering of the central metabolism in Escherichia coli for effective production of n-butanol. Biotechnology for Biofuels, 2016, 9, 69.	6.2	44
22	Bioreactors andin situproduct recovery techniques for acetone–butanol–ethanol fermentation. FEMS Microbiology Letters, 2016, 363, fnw107.	1.8	24
23	Direct in situ butanol recovery inside the packed bed during continuous acetone-butanol-ethanol (ABE) fermentation. Applied Microbiology and Biotechnology, 2016, 100, 7449-7456.	3.6	23
24	Artificial oil body as a potential oral administration system in zebrafish. Journal of the Taiwan Institute of Chemical Engineers, 2016, 61, 46-53.	5.3	7
25	Production of biobutanol from cellulose hydrolysate by the <i>Escherichia coli</i> co-culture system. FEMS Microbiology Letters, 2016, 363, fnw008.	1.8	16
26	Targeted delivery of bio-synthetic lycopene by the bacterial carrier. Journal of the Taiwan Institute of Chemical Engineers, 2016, 59, 91-97.	5.3	6
27	Development of a Targeted Gene-Delivery System Using Escherichia coli. Methods in Molecular Biology, 2016, 1409, 85-93.	0.9	1
28	Effect of <i>Cordyceps Militaris </i> Waster Medium on Production Performance, Egg Traits and Egg Yolk Cholesterol of Laying Hens. Journal of Poultry Science, 2015, 52, 188-196.	1.6	18
29	Effects of recombinant lycopene dietary supplement on the egg quality and blood characteristics of laying quails. Journal of Bioscience and Bioengineering, 2015, 120, 539-543.	2.2	7
30	Development of a thermo-regulated expression vector in Escherichia coli B strain. Journal of the Taiwan Institute of Chemical Engineers, 2015, 53, 1-5.	5.3	17
31	Systematic Engineering of Escherichia coli for d-Lactate Production from Crude Glycerol. Journal of Agricultural and Food Chemistry, 2015, 63, 9583-9589.	5.2	20
32	Potential production platform of n-butanol in Escherichia coli. Metabolic Engineering, 2015, 27, 76-82.	7.0	82
33	The Effect of Serine Protease Inhibitors on Airway Inflammation in a Chronic Allergen-Induced Asthma Mouse Model. Mediators of Inflammation, 2014, 2014, 1-10.	3.0	29
34	Design of a noncovalently linked bifunctional enzyme for whole-cell biotransformation. Process Biochemistry, 2014, 49, 1122-1128.	3.7	14
35	Development of a genomic engineering tool in Saccharomyces cerevisiae. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45, 24-31.	5.3	2
36	In vivo immobilization of d-hydantoinase in Escherichia coli. Journal of Bioscience and Bioengineering, 2014, 118, 78-81.	2.2	16

#	Article	IF	CITATIONS
37	Metabolic Engineering of <i>Escherichia coli</i> for Production of Butyric Acid. Journal of Agricultural and Food Chemistry, 2014, 62, 4342-4348.	5.2	46
38	A useful method integrating production and immobilization of recombinant cellulase. Applied Microbiology and Biotechnology, 2013, 97, 9185-9192.	3.6	4
39	Statistical optimization of one-step immobilization process for recombinant endoglucanase from Clostridium thermocellum. Process Biochemistry, 2013, 48, 1886-1892.	3.7	4
40	Systematic Approach To Engineer Escherichia coli Pathways for Co-utilization of a Glucose–Xylose Mixture. Journal of Agricultural and Food Chemistry, 2013, 61, 7583-7590.	5.2	53
41	Strategy for Stable and High-Level Expression of Recombinant Trehalose Synthase in Escherichia coli. Journal of Agricultural and Food Chemistry, 2012, 60, 6063-6068.	5.2	18
42	Genomic engineering of Escherichia coli by the phage attachment site-based integration system with mutant loxP sites. Process Biochemistry, 2012, 47, 2246-2254.	3.7	19
43	Caleosin-assembled oil bodies as a potential delivery nanocarrier. Applied Microbiology and Biotechnology, 2012, 93, 1905-1915.	3.6	16
44	A Glucose-Insensitive T7 Expression System for Fully-Induced Expression of Proteins at a Subsaturating Level of <scp>l</scp> -Arabinose. Journal of Agricultural and Food Chemistry, 2011, 59, 6534-6542.	5.2	11
45	Marker-Free Chromosomal Expression of Foreign and Native Genes in Escherichia coli. Methods in Molecular Biology, 2011, 765, 113-123.	0.9	1
46	Engineering of <i>Escherichia coli</i> for targeted delivery of transgenes to HER2/ <i>neu</i> â€positive tumor cells. Biotechnology and Bioengineering, 2011, 108, 1662-1672.	3.3	19
47	Genomic engineering of Escherichia coli for production of intermediate metabolites in the aromatic pathway. Journal of the Taiwan Institute of Chemical Engineers, 2011, 42, 34-40.	5.3	7
48	Selective internalization of self-assembled artificial oil bodies by HER2 <i>/neu</i> -positive cells. Nanotechnology, 2011, 22, 015102.	2.6	15
49	Secreted production of <i>Renilla</i> luciferase in <i>Bacillus subtilis</i> . Biotechnology Progress, 2010, 26, 589-594.	2.6	4
50	Medium optimization and production of secreted Renilla luciferase in Bacillus subtilis by fed-batch fermentation. Biochemical Engineering Journal, 2010, 49, 395-400.	3.6	23
51	Construction of Chromosomally Located T7 Expression System for Production of Heterologous Secreted Proteins in Bacillus subtilis. Journal of Agricultural and Food Chemistry, 2010, 58, 5392-5399.	5.2	56
52	Selective Delivery of Cargo Entities to Tumor Cells by Nanoscale Artificial Oil Bodies. Journal of Agricultural and Food Chemistry, 2010, 58, 11695-11702.	5.2	22
53	Enhanced levan production using chitin-binding domain fused levansucrase immobilized on chitin beads. Applied Microbiology and Biotechnology, 2009, 82, 445-451.	3.6	40
54	Repliconâ€free and markerless methods for genomic insertion of DNAs in phage attachment sites and controlled expression of chromosomal genes in <i>Escherichia coli</i> . Biotechnology and Bioengineering, 2008, 101, 985-995.	3.3	53

#	Article	IF	CITATIONS
55	A Facile and Efficient Method To Achieve LacZ Overproduction by the Expression Vector Carrying the Thermoregulated Promoter and Plasmid Copy Number. Biotechnology Progress, 2008, 20, 420-425.	2.6	13
56	Facile Immobilization of EvolvedAgrobacterium radiobacterCarbamoylase with High Thermal and Oxidative Stability. Journal of Agricultural and Food Chemistry, 2008, 56, 6348-6354.	5.2	26
57	One-step purification of insoluble hydantoinase overproduced in Escherichia coli. Protein Expression and Purification, 2007, 52, 14-18.	1.3	29
58	Strategy To Approach Stable Production of Recombinant Nattokinase in Bacillus subtilis. Biotechnology Progress, 2007, 23, 808-813.	2.6	14
59	Medium Optimization for the Production of Recombinant Nattokinase by Bacillus subtilis Using Response Surface Methodology. Biotechnology Progress, 2007, 23, 1327-1332.	2.6	29
60	Strategy To Approach Stable Production of Recombinant Nattokinase in <i>Bacillus subtilis</i> . Biotechnology Progress, 2007, 23, 808-813.	2.6	19
61	Hydantoinases. , 2007, , 599-606.		1
62	Enhancement of recombinant protein production in Escherichia coli by coproduction of aspartase. Journal of Biotechnology, 2006, 124, 403-411.	3.8	9
63	A simple and effective method to prepare immobilized enzymes using artificial oil bodies. Enzyme and Microbial Technology, 2006, 39, 1152-1158.	3.2	24
64	S-system approach to modeling recombinant Escherichia coli growth by hybrid differential evolution with data collocation. Biochemical Engineering Journal, 2006, 28, 10-16.	3.6	22
65	Enhanced production of recombinant nattokinase in Bacillus subtilis by the elimination of limiting factors. Biotechnology Letters, 2006, 28, 1595-1600.	2.2	20
66	Immobilization of Cells with Surface-Displayed Chitin-Binding Domain. Applied and Environmental Microbiology, 2006, 72, 927-931.	3.1	37
67	Efficient production of recombinant proteins in Escherichia coli using an improved l-arabinose-inducible T7 expression system. Process Biochemistry, 2005, 40, 3137-3142.	3.7	5
68	Chitin-binding domain based immobilization of d-hydantoinase. Journal of Biotechnology, 2005, 117, 267-275.	3.8	47
69	Efficient System of Artificial Oil Bodies for Functional Expression and Purification of Recombinant Nattokinase inEscherichia coli. Journal of Agricultural and Food Chemistry, 2005, 53, 4799-4804.	5.2	72
70	Improvement of the Thermoregulated T7 Expression System by Using the Heat-Sensitive lacı. Biotechnology Progress, 2004, 20, 1352-1358.	2.6	19
71	Development of a fed-batch fermentation process to overproduce phosphoenolpyruvate carboxykinase using an expression vector with promoter and plasmid copy number controllable by heat. Biotechnology and Bioengineering, 2003, 84, 459-466.	3.3	6
72	Applicability of New Expression Vectors for Both Engineering Uses and Biological Studies. Biotechnology Progress, 2003, 19, 1076-1080.	2.6	6

#	Article	IF	CITATIONS
73	Purification of industrial hydantoinase in one chromatographic step without affinity tag. Protein Expression and Purification, 2003, 30, 134-139.	1.3	14
74	Molecular cloning of the carboxylesterase gene and biochemical characterization of the encoded protein from Pseudomonas citronellolis ATCC 13674. Research in Microbiology, 2003, 154, 521-526.	2.1	12
75	Construction and characterization of thermo-inducible vectors derived from heat-sensitivelacI genes in combination with the T7 A1 promoter. Biotechnology and Bioengineering, 2002, 79, 1-8.	3.3	23
76	Stringent Regulation and High-Level Expression of Heterologous Genes in Escherichia coli Using T7 System Controllable by the araBAD Promoter. Biotechnology Progress, 2002, 18, 394-400.	2.6	34
77	Title is missing!. Biotechnology Letters, 2001, 23, 5-11.	2.2	7
78	Coupling the T7 A1 Promoter to the Runaway-Replication Vector as an Efficient Method for Stringent Control and High-Level Expression of lacZ. Biotechnology Progress, 2001, 17, 203-207.	2.6	9
79	Selective production of L-aspartic acid and L-phenylalanine by coupling reactions of aspartase and aminotransferase in Escherichia coli. Enzyme and Microbial Technology, 2000, 27, 19-25.	3.2	38
80	Azo dye decolorization with a mutant Escherichia coli strain. Biotechnology Letters, 2000, 22, 807-812.	2.2	87
81	Title is missing!. Biotechnology Letters, 2000, 22, 99-103.	2.2	6
82	Enhanced Conversion Rate of L-Phenylalanine by Coupling Reactions of Aminotransferases and Phosphoenolpyruvate Carboxykinase in Escherichia coli K-12. Biotechnology Progress, 1999, 15, 453-458.	2.6	38
83	Production of D-P-HYDROXYPHENYLGLYCINE BY N-CARBAMOYL-D-amino Acid Amidohydrolase-Overproducing Escherichia coli Strains. Biotechnology Progress, 1999, 15, 603-607.	2.6	22
84	One-Step Production of D-p-Hydroxyphenylglycine by Recombinant Escherichia coli Strains. Biotechnology Progress, 1999, 15, 1039-1045.	2.6	36