List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1434935/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Probiotic Lactobacilli Do Not Protect Chickens against Salmonella Enteritidis Infection by<br>Competitive Exclusion in the Intestinal Tract but in Feed, Outside the Chicken Host. Microorganisms,<br>2022, 10, 219.                                                                           | 1.6 | 11        |
| 2  | <i>Paraphocaeicola brunensis</i> gen. nov., sp. nov., Carrying Two Variants of <i>nimB</i> Resistance<br>Gene from Bacteroides fragilis, and <i>Caecibacteroides pullorum</i> gen. nov., sp. nov., Two Novel<br>Genera Isolated from Chicken Caeca. Microbiology Spectrum, 2022, 10, e0195421. | 1.2 | 2         |
| 3  | Host Species Adaptation of Obligate Gut Anaerobes Is Dependent on Their Environmental Survival.<br>Microorganisms, 2022, 10, 1085.                                                                                                                                                             | 1.6 | 3         |
| 4  | High resolution parallel sequencing reveals multistrain Campylobacter in broiler chicken flocks<br>testing â€~negative' by conventional culture methods: implications for control of Campylobacter<br>infection. Poultry Science, 2022, 101, 102048.                                           | 1.5 | 0         |
| 5  | Morphology, microbiota, and metabolome along the intestinal tract of female turkeys. Poultry Science, 2022, 101, 102046.                                                                                                                                                                       | 1.5 | 0         |
| 6  | Monitoring microbiota in chickens and pigs. , 2021, , 247-254.                                                                                                                                                                                                                                 |     | 2         |
| 7  | The distribution of antibiotic resistance genes in chicken gut microbiota commensals. Scientific Reports, 2021, 11, 3290.                                                                                                                                                                      | 1.6 | 28        |
| 8  | Development of piglet gut microbiota at the time of weaning influences development of postweaning diarrhea – A field study. Research in Veterinary Science, 2021, 135, 59-65.                                                                                                                  | 0.9 | 45        |
| 9  | Ecological Adaptations of Gut Microbiota Members and Their Consequences for Use as a New Generation of Probiotics. International Journal of Molecular Sciences, 2021, 22, 5471.                                                                                                                | 1.8 | 11        |
| 10 | Typhlitis induced by Histomonas meleagridis affects relative but not the absolute Escherichia coli counts and invasion in the gut in turkeys. Veterinary Research, 2021, 52, 92.                                                                                                               | 1.1 | 7         |
| 11 | Eggshell and Feed Microbiota Do Not Represent Major Sources of Gut Anaerobes for Chickens in<br>Commercial Production. Microorganisms, 2021, 9, 1480.                                                                                                                                          | 1.6 | 9         |
| 12 | Detoxification, Hydrogen Sulphide Metabolism and Wound Healing Are the Main Functions That<br>Differentiate Caecum Protein Expression from Ileum of Week-Old Chicken. Animals, 2021, 11, 3155.                                                                                                 | 1.0 | 1         |
| 13 | Different Bacteroides Species Colonise Human and Chicken Intestinal Tract. Microorganisms, 2020, 8, 1483.                                                                                                                                                                                      | 1.6 | 21        |
| 14 | Toll-Like Receptor 4 Signaling in the Ileum and Colon of Gnotobiotic Piglets Infected with Salmonella<br>Typhimurium or Its Isogenic â^†rfa Mutants. Toxins, 2020, 12, 545.                                                                                                                    | 1.5 | 8         |
| 15 | Interleukin 4 inducible 1 gene (IL4I1) is induced in chicken phagocytes by Salmonella Enteritidis<br>infection. Veterinary Research, 2020, 51, 67.                                                                                                                                             | 1.1 | 8         |
| 16 | Gut microbiota composition before infection determines the <i>Salmonella</i> super―and lowâ€shedder phenotypes in chicken. Microbial Biotechnology, 2020, 13, 1611-1630.                                                                                                                       | 2.0 | 28        |
| 17 | Composition and Function of Chicken Gut Microbiota. Animals, 2020, 10, 103.                                                                                                                                                                                                                    | 1.0 | 200       |
| 18 | Environmental Impact on Differential Composition of Gut Microbiota in Indoor Chickens in<br>Commercial Production and Outdoor, Backyard Chickens. Microorganisms, 2020, 8, 767.                                                                                                                | 1.6 | 17        |

| #  | Article                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Systematic Culturomics Shows that Half of Chicken Caecal Microbiota Members can be Grown in<br>Vitro Except for Two Lineages of Clostridiales and a Single Lineage of Bacteroidetes. Microorganisms,<br>2019, 7, 496. | 1.6 | 29        |
| 20 | Influence of the microbiota-gut-brain axis on behavior and welfare in farm animals: A review.<br>Physiology and Behavior, 2019, 210, 112658.                                                                          | 1.0 | 78        |
| 21 | Impact of the Lipopolysaccharide Chemotype of Salmonella Enterica Serovar Typhimurium on<br>Virulence in Gnotobiotic Piglets. Toxins, 2019, 11, 534.                                                                  | 1.5 | 8         |
| 22 | Contact with adult hen affects development of caecal microbiota in newly hatched chicks. PLoS ONE, 2019, 14, e0212446.                                                                                                | 1.1 | 87        |
| 23 | Gut Anaerobes Capable of Chicken Caecum Colonisation. Microorganisms, 2019, 7, 597.                                                                                                                                   | 1.6 | 35        |
| 24 | Use of 16S rRNA gene sequencing for prediction of new opportunistic pathogens in chicken ileal and cecal microbiota. Poultry Science, 2019, 98, 2347-2353.                                                            | 1.5 | 44        |
| 25 | Impact of fliD and virulence plasmid pSEV on response of chicken embryo fibroblasts to Salmonella<br>Enteritidis. Veterinary Immunology and Immunopathology, 2018, 196, 1-4.                                          | 0.5 | 2         |
| 26 | Protein expression in the liver and blood serum in chickens in response to Salmonella Enteritidis infection. Veterinary Immunology and Immunopathology, 2018, 205, 10-16.                                             | 0.5 | 7         |
| 27 | Does selection for growth rate in broilers affect their resistance and tolerance to Eimeria maxima?.<br>Veterinary Parasitology, 2018, 258, 88-98.                                                                    | 0.7 | 37        |
| 28 | Whole genome sequencing and function prediction of 133 gut anaerobes isolated from chicken caecum in pure cultures. BMC Genomics, 2018, 19, 561.                                                                      | 1.2 | 108       |
| 29 | Effects of host genetics and environmental conditions on fecal microbiota composition of pigs. PLoS ONE, 2018, 13, e0201901.                                                                                          | 1.1 | 44        |
| 30 | Infectious bursal disease virus infection leads to changes in the gut associated-lymphoid tissue and the microbiota composition. PLoS ONE, 2018, 13, e0192066.                                                        | 1.1 | 18        |
| 31 | Different roles of CD4, CD8 and γδTâ€lymphocytes in naive and vaccinated chickens during<br><i>Salmonella</i> Enteritidis infection. Proteomics, 2017, 17, 1700073.                                                   | 1.3 | 14        |
| 32 | Influence of the Gut Microbiota Composition on Campylobacter jejuni Colonization in Chickens.<br>Infection and Immunity, 2017, 85, .                                                                                  | 1.0 | 66        |
| 33 | Differential protein expression in chicken macrophages and heterophils in vivo following infection with Salmonella Enteritidis. Veterinary Research, 2017, 48, 35.                                                    | 1.1 | 36        |
| 34 | Gene expression in the chicken caecum is dependent on microbiota composition. Veterinary Research, 2017, 48, 85.                                                                                                      | 1.1 | 17        |
| 35 | Housing Systems Influence Gut Microbiota Composition of Sows but Not of Their Piglets. PLoS ONE, 2017, 12, e0170051.                                                                                                  | 1.1 | 68        |
| 36 | Composition of Gut Microbiota Influences Resistance of Newly Hatched Chickens to Salmonella<br>Enteritidis Infection. Frontiers in Microbiology, 2016, 7, 957.                                                        | 1.5 | 67        |

| #  | Article                                                                                                                                                                                | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | The influence of age on Campylobacter jejuni infection in chicken. Developmental and Comparative<br>Immunology, 2016, 62, 58-71.                                                       | 1.0 | 21        |
| 38 | Immune protection of chickens conferred by a vaccine consisting of attenuated strains of Salmonella<br>Enteritidis, Typhimurium and Infantis. Veterinary Research, 2016, 47, 94.       | 1.1 | 21        |
| 39 | Important Metabolic Pathways and Biological Processes Expressed by Chicken Cecal Microbiota.<br>Applied and Environmental Microbiology, 2016, 82, 1569-1576.                           | 1.4 | 281       |
| 40 | Transient and Prolonged Response of Chicken Cecum Mucosa to Colonization with Different Gut<br>Microbiota. PLoS ONE, 2016, 11, e0163932.                                               | 1.1 | 30        |
| 41 | phoP, SPI1, SPI2 and aroA mutants of Salmonella Enteritidis induce a different immune response in chickens. Veterinary Research, 2015, 46, 96.                                         | 1.1 | 6         |
| 42 | Gene Expression Profiles of Chicken Embryo Fibroblasts in Response to Salmonella Enteritidis<br>Infection. PLoS ONE, 2015, 10, e0127708.                                               | 1.1 | 18        |
| 43 | Curcuma and Scutellaria plant extracts protect chickens against inflammation and Salmonella<br>Enteritidis infection. Poultry Science, 2015, 94, 2049-2058.                            | 1.5 | 38        |
| 44 | Characterization of Antibiotic Resistance Gene Abundance and Microbiota Composition in Feces of<br>Organic and Conventional Pigs from Four EU Countries. PLoS ONE, 2015, 10, e0132892. | 1.1 | 52        |
| 45 | The Early Innate Response of Chickens to Salmonella enterica Is Dependent on the Presence of<br>O-Antigen but Not on Serovar Classification. PLoS ONE, 2014, 9, e96116.                | 1.1 | 9         |
| 46 | Characterization of Microbiota Composition and Presence of Selected Antibiotic Resistance Genes in<br>Carriage Water of Ornamental Fish. PLoS ONE, 2014, 9, e103865.                   | 1.1 | 37        |
| 47 | Succession and Replacement of Bacterial Populations in the Caecum of Egg Laying Hens over Their<br>Whole Life. PLoS ONE, 2014, 9, e115142.                                             | 1.1 | 151       |
| 48 | Gene expression in the chicken caecum in response to infections with non-typhoid Salmonella.<br>Veterinary Research, 2014, 45, 119.                                                    | 1.1 | 92        |
| 49 | The response of porcine monocyte derived macrophages and dendritic cells to<br>SalmonellaTyphimurium and lipopolysaccharide. BMC Veterinary Research, 2014, 10, 244.                   | 0.7 | 19        |
| 50 | lmmune response of pigs to Salmonella enterica serovar Derby and Typhimurium infections. Veterinary<br>Microbiology, 2014, 170, 284-290.                                               | 0.8 | 14        |
| 51 | Characterization of Egg Laying Hen and Broiler Fecal Microbiota in Poultry Farms in Croatia, Czech<br>Republic, Hungary and Slovenia. PLoS ONE, 2014, 9, e110076.                      | 1.1 | 70        |
| 52 | Chicken innate immune response to oral infection with Salmonella enterica serovar Enteritidis.<br>Veterinary Research, 2013, 44, 37.                                                   | 1.1 | 95        |
| 53 | Influence of Salmonella enterica serovar Enteritidis infection on the composition of chicken cecal microbiota. BMC Veterinary Research, 2013, 9, 140.                                  | 0.7 | 91        |
| 54 | Chicken faecal microbiota and disturbances induced by single or repeated therapy with tetracycline and streptomycin. BMC Veterinary Research, 2013, 9, 30.                             | 0.7 | 96        |

| #  | Article                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Impact of maternally-derived antibodies against Salmonella enterica serovar Typhimurium on the<br>bacterial load in suckling piglets. Veterinary Journal, 2013, 196, 114-115.         | 0.6 | 22        |
| 56 | SPI1 defective mutants of Salmonella enterica induce cross-protective immunity in chickens against challenge with serovars Typhimurium and Enteritidis. Vaccine, 2013, 31, 3156-3162. | 1.7 | 22        |
| 57 | Vaccination of Chickens with SPI1-lon and SPI1-lon-fliC Mutant of Salmonella enterica Serovar<br>Enteritidis. PLoS ONE, 2013, 8, e66172.                                              | 1.1 | 11        |
| 58 | Vaccination of chickens with Salmonella Pathogenicity Island (SPI) 1 and SPI2 defective mutants of Salmonella enterica serovar Enteritidis. Vaccine, 2012, 30, 2090-2097.             | 1.7 | 33        |
| 59 | SPI-1 encoded genes of Salmonella Typhimurium influence differential polarization of porcine alveolar macrophages in vitro. BMC Veterinary Research, 2012, 8, 115.                    | 0.7 | 29        |
| 60 | Cytokine Signaling in Splenic Leukocytes from Vaccinated and Non-Vaccinated Chickens after<br>Intravenous Infection with Salmonella Enteritidis. PLoS ONE, 2012, 7, e32346.           | 1.1 | 19        |
| 61 | Characterization of Chicken Spleen Transcriptome after Infection with Salmonella enterica Serovar Enteritidis. PLoS ONE, 2012, 7, e48101.                                             | 1.1 | 77        |
| 62 | Association of attenuated mutants of Salmonella enterica serovar Enteritidis with porcine peripheral blood leukocytes. FEMS Microbiology Letters, 2011, 321, 37-42.                   | 0.7 | 4         |
| 63 | Influence of the lipopolysaccharide structure of Salmonella enterica serovar Enteritidis on interactions with pig neutrophils. Veterinary Microbiology, 2011, 150, 167-172.           | 0.8 | 10        |
| 64 | LPS structure influences protein secretion in Salmonella enterica. Veterinary Microbiology, 2011, 152, 131-137.                                                                       | 0.8 | 10        |
| 65 | SPI-1-encoded type III secretion system of Salmonella enterica is required for the suppression of porcine alveolar macrophage cytokine expression. Veterinary Research, 2011, 42, 16. | 1.1 | 51        |
| 66 | Retron Se72 utilizes a unique strategy of the self-priming initiation of reverse transcription. Cellular and Molecular Life Sciences, 2011, 68, 3607-3617.                            | 2.4 | 4         |
| 67 | allB, allantoin utilisation and Salmonella enterica serovar Enteritidis and Typhimurium colonisation of poultry and mice. Folia Microbiologica, 2011, 56, 264-269.                    | 1.1 | 6         |
| 68 | Immune Response of Chicken Gut to Natural Colonization by Gut Microflora and to Salmonella enterica Serovar Enteritidis Infection. Infection and Immunity, 2011, 79, 2755-2763.       | 1.0 | 265       |
| 69 | Influence of 5 major Salmonella pathogenicity islands on NK cell depletion in mice infected with Salmonella enterica serovar Enteritidis. BMC Microbiology, 2010, 10, 75.             | 1.3 | 27        |
| 70 | Epidemiology and interaction of Salmonella enterica serovar Derby, Infantis and Typhimurium with porcine alveolar macrophages. Veterinary Microbiology, 2010, 146, 105-110.           | 0.8 | 23        |
| 71 | Virulence potential of five major pathogenicity islands (SPI-1 to SPI-5) of Salmonella enterica serovar<br>Enteritidis for chickens. BMC Microbiology, 2009, 9, 268.                  | 1.3 | 107       |
| 72 | Distribution of integrons and SGI1 among antibiotic-resistant Salmonella enterica isolates of animal origin. Veterinary Microbiology, 2009, 133, 193-198.                             | 0.8 | 12        |

| #  | Article                                                                                                                                                                                                                                                                        | IF                 | CITATIONS     |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------|
| 73 | Comparative analysis of Salmonella enterica serovar Enteritidis mutants with a vaccine potential.<br>Vaccine, 2009, 27, 5265-5270.                                                                                                                                             | 1.7                | 50            |
| 74 | Biofilm formation in field strains of Salmonella enterica serovar Typhimurium: Identification of a new colony morphology type and the role of SGI1 in biofilm formation. Veterinary Microbiology, 2008, 129, 360-366.                                                          | 0.8                | 55            |
| 75 | Salmonella enterica serovar Typhimurium typing by prophage-specific PCR. Microbiology (United) Tj ETQq1 1                                                                                                                                                                      | 0.784314 rg<br>0.7 | gBT /Overlock |
| 76 | aro Mutations in Salmonella enterica Cause Defects in Cell Wall and Outer Membrane Integrity.<br>Journal of Bacteriology, 2008, 190, 3155-3160.                                                                                                                                | 1.0                | 41            |
| 77 | Ordered expression of virulence genes inSalmonella enterica serovar typhimurium. Folia<br>Microbiologica, 2007, 52, 107-14.                                                                                                                                                    | 1.1                | 13            |
| 78 | Identification of putative ancestors of the multidrug-resistant Salmonella enterica serovar<br>typhimurium DT104 clone harboring the Salmonella genomic island 1. Archives of Microbiology, 2007,<br>187, 415-424.                                                             | 1.0                | 28            |
| 79 | Distribution and function of plasmids in Salmonella enterica. Veterinary Microbiology, 2006, 112, 1-10.                                                                                                                                                                        | 0.8                | 159           |
| 80 | Salmonellastress management and its relevance to behaviour during intestinal colonisation and infection. FEMS Microbiology Reviews, 2005, 29, 1021-1040.                                                                                                                       | 3.9                | 166           |
| 81 | Retron reverse transcriptase () can be lost in multidrug resistant serovar Typhimurium DT 104 strains<br>and influences virulence for mice. Veterinary Microbiology, 2005, 111, 191-197.                                                                                       | 0.8                | 11            |
| 82 | Genes responsible for anaerobic fumarate and arginine metabolism are involved in growth<br>suppression in Salmonella enterica serovar Typhimurium in vitro, without influencing colonisation<br>inhibition in the chicken in vivo. Veterinary Microbiology, 2003, 97, 191-199. | 0.8                | 11            |
| 83 | Retron reverse transcriptase rrtT is ubiquitous in strains of Salmonella enterica serovar<br>Typhimurium. FEMS Microbiology Letters, 2003, 223, 281-286.                                                                                                                       | 0.7                | 10            |
| 84 | Growth and colonization suppression ofSalmonella entericaserovar Hadar in vitro and in vivo. FEMS<br>Microbiology Letters, 2003, 218, 127-133.                                                                                                                                 | 0.7                | 17            |
| 85 | Role of SdiA in Salmonella enterica serovar Typhimurium physiology and virulence. Archives of<br>Microbiology, 2002, 178, 94-101.                                                                                                                                              | 1.0                | 23            |
| 86 | Identification of Salmonella enterica serovar Typhimurium genes associated with growth suppression<br>in stationary-phase nutrient broth cultures and in the chicken intestine. Archives of Microbiology,<br>2002, 178, 411-420.                                               | 1.0                | 27            |
| 87 | Low-Molecular-Weight Plasmid of Salmonella enterica Serovar Enteritidis Codes for Retron Reverse<br>Transcriptase and Influences Phage Resistance. Journal of Bacteriology, 2001, 183, 2852-2858.                                                                              | 1.0                | 24            |
| 88 | Subdivision of Salmonella enterica serovar enteritidis phage types PT14b and PT21 by plasmid profiling.<br>Veterinary Microbiology, 2000, 74, 217-225.                                                                                                                         | 0.8                | 15            |
| 89 | Flow cytometry characterisation of Salmonella typhimurium mutants defective in proton translocating proteins and stationary-phase growth phenotype. Journal of Microbiological Methods, 2000, 42, 255-263.                                                                     | 0.7                | 15            |
| 90 | Rapid detection of Salmonella in field samples by nested polymerase chain reaction. Letters in Applied Microbiology, 1999, 29, 269-272.                                                                                                                                        | 1.0                | 27            |

| #  | Article                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | Computer-assisted restriction endonuclease analysis of plasmid DNA in field strains of <i>Salmonella enteritidis</i> . Canadian Journal of Microbiology, 1998, 44, 1183-1185. | 0.8 | 8         |
| 92 | Computer-assisted restriction endonuclease analysis of plasmid DNA in field strains of <i>Salmonella enteritidis</i> . Canadian Journal of Microbiology, 1998, 44, 1183-1185. | 0.8 | 3         |
| 93 | Computer-assisted restriction endonuclease analysis of plasmid DNA in field strains of Salmonella<br>enteritidis. Canadian Journal of Microbiology, 1998, 44, 1183-5.         | 0.8 | 4         |