
Sharon R Neufeldt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1434811/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Solvent coordination to palladium can invert the selectivity of oxidative addition. Chemical Science, 2022, 13, 1618-1628.	7.4	12
2	Unconventional Site Selectivity in Palladium-Catalyzed Cross-Couplings of Dichloroheteroarenes under Ligand-Controlled and Ligand-Free Systems. Journal of Organic Chemistry, 2022, 87, 7414-7421.	3.2	13
3	Different Oxidative Addition Mechanisms for 12- and 14-Electron Palladium(0) Explain Ligand-Controlled Divergent Site Selectivity. ACS Catalysis, 2022, 12, 8822-8828.	11.2	13
4	Chemodivergence between Electrophiles in Cross oupling Reactions. Chemistry - A European Journal, 2021, 27, 6161-6177.	3.3	44
5	Frontispiece: Chemodivergence between Electrophiles in Cross oupling Reactions. Chemistry - A European Journal, 2021, 27, .	3.3	0
6	C–O-Selective Cross-Coupling of Chlorinated Phenol Derivatives. Synlett, 2021, 32, 1484-1491.	1.8	2
7	Mechanistic Investigation into the Gold-Catalyzed Decarboxylative Cross-Coupling of Iodoarenes. ACS Catalysis, 2021, 11, 9578-9587.	11.2	18
8	Experimental and Computational Evaluation of Tantalocene Hydrides for C–H Activation of Arenes. Organometallics, 2021, 40, 2666-2677.	2.3	3
9	Combined Experimental and Computational Mechanistic Investigation of the Palladium-Catalyzed Decarboxylative Cross-Coupling of Sodium Benzoates with Chloroarenes. Journal of Organic Chemistry, 2021, 86, 11419-11433.	3.2	5
10	Solvent Effects on the Selectivity of Palladium atalyzed Suzukiâ€Miyaura Couplings. Israel Journal of Chemistry, 2020, 60, 406-409.	2.3	23
11	Small Phosphine Ligands Enable Selective Oxidative Addition of Ar–O over Ar–Cl Bonds at Nickel(0). Journal of the American Chemical Society, 2020, 142, 15454-15463.	13.7	34
12	Gold Catalyzed Decarboxylative Cross-Coupling of Iodoarenes. Journal of the American Chemical Society, 2020, 142, 13210-13218.	13.7	30
13	N-Heterocyclic Carbene Ligand-Controlled Chemodivergent Suzuki–Miyaura Cross Coupling. Journal of Organic Chemistry, 2019, 84, 11799-11812.	3.2	26
14	Nickel-Catalyzed Stille Cross Coupling of C–O Electrophiles. ACS Catalysis, 2019, 9, 3304-3310.	11.2	20
15	Ligation state of nickel during C O bond activation with monodentate phosphines. Tetrahedron, 2018, 74, 6717-6725.	1.9	17
16	Pyridine N-Oxide vs Pyridine Substrates for Rh(III)-Catalyzed Oxidative C–H Bond Functionalization. Journal of the American Chemical Society, 2015, 137, 9843-9854.	13.7	89
17	A Twist on Facial Selectivity of Hydride Reductions of Cyclic Ketones: Twist-Boat Conformers in Cyclohexanone, Piperidone, and Tropinone Reactions. Journal of Organic Chemistry, 2014, 79, 11609-11618.	3.2	21
18	Mild Palladium-Catalyzed C–H Alkylation Using Potassium Alkyltrifluoroborates in Combination with MnF ₃ . Organic Letters, 2013, 15, 2302-2305.	4.6	157

SHARON R NEUFELDT

#	Article	IF	CITATIONS
19	Palladium-catalyzed C–H arylation using aryltrifluoroborates inÂconjunction with a MnIII oxidant under mild conditions. Tetrahedron, 2013, 69, 5580-5587.	1.9	14
20	Asymmetric Chiral Ligand-Directed Alkene Dioxygenation. Organic Letters, 2013, 15, 46-49.	4.6	57
21	Combining Transition Metal Catalysis with Radical Chemistry: Dramatic Acceleration of Palladium atalyzed CH Arylation with Diaryliodonium Salts. Advanced Synthesis and Catalysis, 2012, 354, 3517-3522.	4.3	187
22	Controlling Site Selectivity in Palladium-Catalyzed C–H Bond Functionalization. Accounts of Chemical Research, 2012, 45, 936-946.	15.6	1,257
23	Room-Temperature C–H Arylation: Merger of Pd-Catalyzed C–H Functionalization and Visible-Light Photocatalysis. Journal of the American Chemical Society, 2011, 133, 18566-18569.	13.7	597
24	<i>O</i> -Acetyl Oximes as Transformable Directing Groups for Pd-Catalyzed Câ^'H Bond Functionalization. Organic Letters, 2010, 12, 532-535.	4.6	180
25	Thermochemistry for the Dehydrogenation of Methyl-Substituted Ammonia Borane Compounds. Journal of Physical Chemistry A, 2009, 113, 6121-6132.	2.5	56
26	Palladium(0)-Catalyzed Synthesis of Chiral Ene-allenes Using Alkenyl Trifluoroborates. Journal of Organic Chemistry, 2006, 71, 1563-1568.	3.2	90