Wen-Feng Ren

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1434809/publications.pdf

Version: 2024-02-01

394286 345118 1,376 35 19 36 citations g-index h-index papers 36 36 36 1783 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Solvent-induced in-situ self-assembly lignin nanoparticles to reinforce conductive nanocomposite organogels as anti-freezing and anti-dehydration flexible strain sensors. Chemical Engineering Journal, 2022, 433, 133202.	6.6	54
2	Bifunctional hydrogen-bonding cross-linked polymeric binders for silicon anodes of lithium-ion batteries. Electrochimica Acta, 2022, 402, 139552.	2.6	11
3	Heteroatom-rich polymers as a protective film to control lithium growth for high-performance lithium-metal batteries. Journal of Power Sources, 2022, 521, 230949.	4.0	9
4	A renewable biomass-based lignin film as an effective protective layer to stabilize zinc metal anodes for high-performance zinc–iodine batteries. Journal of Materials Chemistry A, 2022, 10, 4845-4857.	5.2	47
5	Highly Conductive and Mechanically Robust Cellulose Nanocomposite Hydrogels with Antifreezing and Antidehydration Performances for Flexible Humidity Sensors. ACS Applied Materials & Description (Interfaces, 2022, 14, 10886-10897.	4.0	87
6	Fabrication of polyacrylic acid-based composite binders with strong binding forces on copper foils for silicon anodes in lithium-ion batteries. Journal of Industrial and Engineering Chemistry, 2022, 109, 521-529.	2.9	7
7	Ultrahighly Elastic Lignin-Based Copolymers as an Effective Binder for Silicon Anodes of Lithium-lon Batteries. ACS Sustainable Chemistry and Engineering, 2022, 10, 166-176.	3.2	9
8	Transparent, Selfâ€Adhesive, Conductive Organohydrogels with Fast Gelation from Ligninâ€Based Selfâ€Catalytic System for Extreme Environmentâ€Resistant Triboelectric Nanogenerators. Advanced Functional Materials, 2022, 32, .	7.8	63
9	Improving the Electrochemical Property of Silicon Anodes through Hydrogen-Bonding Cross-Linked Thiourea-Based Polymeric Binders. ACS Applied Materials & Diterfaces, 2021, 13, 639-649.	4.0	36
10	Boosting photocatalytic performance for selective oxidation of biomass-derived pentoses and hexoses to lactic acid using hierarchically porous Cu/Cu ₂ O/CuO@CA. Journal of Materials Chemistry C, 2021, 9, 16450-16458.	2.7	22
11	Fabrication of multi-shell coated silicon nanoparticles via in-situ electroless deposition as high performance anodes for lithium ion batteries. Journal of Energy Chemistry, 2020, 48, 160-168.	7.1	37
12	The Si@Câ€Network Electrode Prepared by an Inâ€Situ Carbonization Strategy with Enhanced Cycle Performance. ChemElectroChem, 2020, 7, 4999-5004.	1.7	4
13	High Cycling Performance Liâ€5 Battery via Fenugreek Gum Binder Through Chemical Bonding of the Binder with Polysulfides in Nanosulfur@CNFs Cathode. ChemistrySelect, 2020, 5, 8969-8979.	0.7	11
14	Nanosized Si particles with rich surface organic functional groups as high-performance Li-battery anodes. Electrochimica Acta, 2019, 320, 134625.	2.6	16
15	Si anode for next-generation lithium-ion battery. Current Opinion in Electrochemistry, 2019, 18, 46-54.	2.5	48
16	Ultrahigh sulfur content up to 93Âwt% encapsulated in multilayer nanoshell of V/V2O5 composite to suppress shuttle effect of lithium–sulfur battery with high-performance. Materials Today Energy, 2019, 13, 267-276.	2.5	29
17	Synthesis of LiFe0.4Mn0.4Co0.2PO4/C cathode material of lithium ion battery with enhanced electrochemical performance. Journal of Alloys and Compounds, 2019, 782, 413-420.	2.8	8
18	Fabrication of Si Nanoparticles@Conductive Carbon Framework@Polymer Composite as Highâ€Arealâ€Capacity Anode of Lithiumâ€Ion Batteries. ChemElectroChem, 2018, 5, 3258-3265.	1.7	20

#	Article	IF	Citations
19	Porous carbons derived from hypercrosslinked porous polymers for gas adsorption and energy storage. Carbon, 2017, 114, 608-618.	5.4	170
20	Li4SiO4-coated LiNi0.5Mn1.5O4 as the high performance cathode materials for lithium-ion batteries. Frontiers in Energy, 2017, 11, 374-382.	1.2	15
21	Facile synthesis of spinel LiNi0.5Mn1.5O4 cathode materials using M2(OH)2(C8H4O4)-class metal-organic frameworks. Ionics, 2017, 23, 2969-2980.	1.2	7
22	Microporous organic polymer-based lithium ion batteries with improved rate performance and energy density. Journal of Power Sources, 2016, 317, 49-56.	4.0	110
23	Facile patterning silicon wafer by Rochow reaction over patterned Cu-based catalysts. Applied Surface Science, 2016, 360, 192-197.	3.1	3
24	Novel silicon/carbon nano-branches synthesized by reacting silicon with methyl chloride: A high performing anode material in lithium ion battery. Journal of Power Sources, 2016, 332, 88-95.	4.0	29
25	Preparation-microstructure-performance relationship of Li-rich transition metal oxides microspheres as cathode materials for lithium ion batteries. Electrochimica Acta, 2016, 191, 491-499.	2.6	15
26	Carbon-coated porous silicon composites as high performance Li-ion battery anode materials: can the production process be cheaper and greener?. Journal of Materials Chemistry A, 2016, 4, 552-560.	5.2	88
27	Lowâ€Cost Synthesis of Porous Silicon via Ferriteâ€Assisted Chemical Etching and Their Application as Siâ€Based Anodes for Liâ€Ion Batteries. Advanced Electronic Materials, 2015, 1, 1400059.	2.6	18
28	Preparation of porous silicon/carbon microspheres as high performance anode materials for lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 5859-5865.	5.2	60
29	Preparation of porous carbon microspheres anode materials from fine needle coke powders for lithium-ion batteries. RSC Advances, 2015, 5, 11115-11123.	1.7	35
30	Synthesis of porous microspheres composed of graphitized carbon@amorphous silicon/carbon layers as high performance anode materials for Li-ion batteries. RSC Advances, 2014, 4, 55010-55015.	1.7	6
31	Scalable Synthesis of Interconnected Porous Silicon/Carbon Composites by the Rochow Reaction as Highâ€Performance Anodes of Lithium Ion Batteries. Angewandte Chemie - International Edition, 2014, 53, 5165-5169.	7.2	175
32	Mn0.5Co0.5Fe2O4 nanoparticles highly dispersed in porous carbon microspheres as high performance anode materials in Li-ion batteries. Nanoscale, 2014, 6, 6805.	2.8	14
33	Ni _{0.33} Mn _{0.33} Co _{0.33} Fe ₂ O ₄ nanoparticles anchored on oxidized carbon nanotubes as advanced anode materials in Li-ion batteries. RSC Advances, 2014, 4, 33769-33775.	1.7	4
34	Improved molten salt synthesis and structure evolution upon cycling of 0.5Li2MnO3·0.5LiCoO2 in lithium-ion batteries. Journal of Solid State Electrochemistry, 2013, 17, 2259-2267.	1.2	10
35	Storage Characteristics and Surface Basicity Properties of Li-Rich Cathode Materials Used in Lithium Ion Batteries. Journal of the Electrochemical Society, 2013, 160, A82-A86.	1.3	23