Peter Gumbsch

List of Publications by Citations

Source: https://exaly.com/author-pdf/1434732/peter-gumbsch-publications-by-citations.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 218
 11,076
 55
 98

 papers
 citations
 h-index
 g-index

 222
 12,303
 6.5
 6.42

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
218	Structural relaxation made simple. <i>Physical Review Letters</i> , 2006 , 97, 170201	7.4	907
217	Interactions between non-screw lattice dislocations and coherent twin boundaries in face-centered cubic metals. <i>Acta Materialia</i> , 2008 , 56, 1126-1135	8.4	381
216	Melting mechanisms at the limit of superheating. <i>Physical Review Letters</i> , 2001 , 87, 055703	7.4	325
215	The interaction mechanism of screw dislocations with coherent twin boundaries in different face-centred cubic metals. <i>Scripta Materialia</i> , 2006 , 54, 1163-1168	5.6	313
214	The evolving quality of frictional contact with graphene. <i>Nature</i> , 2016 , 539, 541-545	50.4	278
213	Controlling factors for the brittle-to-ductile transition in tungsten single crystals. <i>Science</i> , 1998 , 282, 1293-5	33.3	274
212	The ultrasmoothness of diamond-like carbon surfaces. <i>Science</i> , 2005 , 309, 1545-8	33.3	262
211	Anisotropic mechanical amorphization drives wear in diamond. <i>Nature Materials</i> , 2011 , 10, 34-8	27	241
210	Dislocations faster than the speed of sound. <i>Science</i> , 1999 , 283, 965-8	33.3	224
209	Directional anisotropy in the cleavage fracture of silicon. <i>Physical Review Letters</i> , 2000 , 84, 5347-50	7.4	221
208	Efficiency of laser surface texturing in the reduction of friction under mixed lubrication. <i>Tribology International</i> , 2014 , 77, 142-147	4.9	195
207	Tailored Buckling Microlattices as Reusable Light-Weight Shock Absorbers. <i>Advanced Materials</i> , 2016 , 28, 5865-70	24	186
206	Low-speed fracture instabilities in a brittle crystal. <i>Nature</i> , 2008 , 455, 1224-1227	50.4	170
205	An ab initio study of the cleavage anisotropy in silicon. <i>Acta Materialia</i> , 2000 , 48, 4517-4530	8.4	156
204	Energy dissipation and path instabilities in dynamic fracture of silicon single crystals. <i>Physical Review Letters</i> , 2000 , 85, 788-91	7.4	149
203	Interface stresses and their effects on the elastic moduli of metallic multilayers. <i>Physical Review B</i> , 1991 , 44, 3934-3938	3.3	134
202	Brittle fracture and the brittle-to-ductile transition of tungsten. <i>Journal of Nuclear Materials</i> , 2003 , 323, 304-312	3.3	133

(2011-2009)

201	Initial dislocation structures in 3-D discrete dislocation dynamics and their influence on microscale plasticity. <i>Acta Materialia</i> , 2009 , 57, 1744-1754	8.4	132
200	Describing bond-breaking processes by reactive potentials: Importance of an environment-dependent interaction range. <i>Physical Review B</i> , 2008 , 78,	3.3	122
199	A three-dimensional continuum theory of dislocation systems: kinematics and mean-field formulation. <i>Philosophical Magazine</i> , 2007 , 87, 1261-1282	1.6	122
198	Micro-bending tests: A comparison between three-dimensional discrete dislocation dynamics simulations and experiments. <i>Acta Materialia</i> , 2008 , 56, 1942-1955	8.4	112
197	Plasticity and an inverse brittle-to-ductile transition in strontium titanate. <i>Physical Review Letters</i> , 2001 , 87, 085505	7.4	111
196	Continuum dislocation dynamics: Towards a physical theory of crystal plasticity. <i>Journal of the Mechanics and Physics of Solids</i> , 2014 , 63, 167-178	5	110
195	Interface controlled plasticity in metals: dispersion hardening and thin film deformation. <i>Progress in Materials Science</i> , 2001 , 46, 283-307	42.2	106
194	A quantum mechanical calculation of the theoretical strength of metals. <i>Philosophical Magazine Letters</i> , 1991 , 63, 267-274	1	106
193	The interaction of dislocations and hydrogen-vacancy complexes and its importance for deformation-induced proto nano-voids formation in 日e. <i>International Journal of Plasticity</i> , 2015 , 74, 175-191	7.6	104
192	New directions in mechanics. <i>Mechanics of Materials</i> , 2005 , 37, 231-259	3.3	104
191	An atomistic study of brittle fracture: Toward explicit failure criteria from atomistic modeling. Journal of Materials Research, 1995 , 10, 2897-2907	2.5	104
190	Molecular dynamics investigation of dynamic crack stability. <i>Physical Review B</i> , 1997 , 55, 3445-3455	3.3	103
189	Cleavage anisotropy in tungsten single crystals. <i>Physical Review Letters</i> , 1996 , 76, 3594-3597	7.4	102
188	Discrete dislocation simulations of the plasticity of micro-pillars under uniaxial loading. <i>Scripta Materialia</i> , 2008 , 58, 587-590	5.6	99
187	Atomistic modeling of mechanical behavior. <i>Acta Materialia</i> , 2003 , 51, 5711-5742	8.4	99
186	Dislocation sources and the flow stress of polycrystalline thin metal films. <i>Philosophical Magazine Letters</i> , 2003 , 83, 1-8	1	99
185	Atomistic aspects of fracture. International Journal of Fracture, 2015, 191, 13-30	2.3	98
184	A universal scaling of planar fault energy barriers in face-centered cubic metals. <i>Scripta Materialia</i> , 2011 , 64, 605-608	5.6	95

183	Screened empirical bond-order potentials for Si-C. <i>Physical Review B</i> , 2013 , 87,	3.3	91
182	Anticrack nucleation as triggering mechanism for snow slab avalanches. <i>Science</i> , 2008 , 321, 240-3	33.3	90
181	Hydrogenated vacancies lock dislocations in aluminium. <i>Nature Communications</i> , 2016 , 7, 13341	17.4	88
180	Pentamode Metamaterials with Independently Tailored Bulk Modulus and Mass Density. <i>Physical Review Applied</i> , 2014 , 2,	4.3	84
179	Continuum modeling of dislocation plasticity: Theory, numerical implementation, and validation by discrete dislocation simulations. <i>Journal of Materials Research</i> , 2011 , 26, 623-632	2.5	79
178	Discrete dislocation simulation of plastic deformation in metal thin films. <i>Acta Materialia</i> , 2004 , 52, 773	-7884	79
177	Dislocationgrain boundary interaction in <1 1 1> textured thin metal films. <i>Acta Materialia</i> , 2010 , 58, 5232-5241	8.4	78
176	Magnetic bond-order potential for iron. <i>Physical Review Letters</i> , 2011 , 106, 246402	7·4	74
175	Atomistic Aspects of Brittle Fracture. MRS Bulletin, 2000, 25, 15-20	3.2	73
174	Characteristics of mechanical metamaterials based on buckling elements. <i>Journal of the Mechanics and Physics of Solids</i> , 2017 , 102, 151-164	5	70
173	Ab initio study of surface stress response to charging. <i>Europhysics Letters</i> , 2007 , 78, 13001	1.6	68
172	Crack Propagation in Quasicrystals. <i>Physical Review Letters</i> , 1998 , 81, 3163-3166	7 ⋅4	66
171	Dynamic aspects of dislocation motion: atomistic simulations. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2005 , 400-401, 40-44	5.3	65
170	Fracture toughness of polycrystalline tungsten under mode I and mixed mode I/II loading. <i>Materials Science & Microstructure and Processing</i> , 1999 , 270, 197-209	5.3	65
169	Core properties and motion of dislocations in NiAl. <i>Acta Materialia</i> , 1998 , 46, 903-918	8.4	61
168	Ab initio study of the critical thickness for ferroelectricity in ultrathin Pt P bTiO3 P t films. <i>Physical Review B</i> , 2006 , 74,	3.3	61
167	On the continuum versus atomistic descriptions of dislocation nucleation and cleavage in nickel. <i>Modelling and Simulation in Materials Science and Engineering</i> , 1995 , 3, 597-613	2	61
166	Sequence of Stages in the Microstructure Evolution in Copper under Mild Reciprocating Tribological Loading. <i>ACS Applied Materials & Discrete Samp; Interfaces</i> , 2016 , 8, 15809-19	9.5	58

(2007-2008)

165	Atomistic simulations of interactions between the 1 / 2<111> edge dislocation and symmetric tilt grain boundaries in tungsten. <i>Philosophical Magazine</i> , 2008 , 88, 547-560	1.6	56	
164	Atomic structure of the (310) twin in niobium: Experimental determination and comparison with theoretical predictions. <i>Physical Review Letters</i> , 1993 , 70, 449-452	7.4	55	
163	Atomistic study of drag, surface and inertial effects on edge dislocations in face-centered cubic metals. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2004 , 387-389, 11-15	5.3	54	
162	Dislocation Modelling of Fatigue Cracks: An Overview. <i>Materials Transactions</i> , 2001 , 42, 2-13	1.3	53	
161	On radiation-free transonic motion of cracks and dislocations. <i>Journal of the Mechanics and Physics of Solids</i> , 1999 , 47, 1941-1961	5	53	
160	An empirical interatomic potential for B2 NiAl. <i>Modelling and Simulation in Materials Science and Engineering</i> , 1995 , 3, 533-542	2	53	
159	Flexoelectricity and the polarity of complex ferroelastic twin patterns. <i>Physical Review B</i> , 2016 , 94,	3.3	52	
158	3D-finite-element-modelling of microstructures with the method of multiphase elements. <i>Computational Materials Science</i> , 1997 , 9, 28-35	3.2	50	
157	Three-dimensional dislocation dynamics simulation of the influence of sample size on the stressEtrain behavior of fcc single-crystalline pillars. <i>Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2008 , 483-484, 188-190	5.3	50	
156	Ab initio study of the surface properties and ideal strength of (100) silicon thin films. <i>Physical Review B</i> , 2005 , 72,	3.3	50	
155	Contact splitting and the effect of dimple depth on static friction of textured surfaces. <i>ACS Applied Materials & Distriction of Static Action of Static Actio</i>	9.5	48	
154	Mechanisms of dislocation multiplication at crack tips. <i>Acta Materialia</i> , 2013 , 61, 1394-1403	8.4	48	
153	Numerical implementation of a 3D continuum theory of dislocation dynamics and application to micro-bending. <i>Philosophical Magazine</i> , 2010 , 90, 3697-3728	1.6	48	
152	Atomistic Simulations of Dislocations in Confined Volumes. MRS Bulletin, 2009, 34, 184-189	3.2	48	
151	Ab initioscreening methodology applied to the search for new permanent magnetic materials. <i>New Journal of Physics</i> , 2013 , 15, 125023	2.9	44	
150	Study of dislocation reactions and rearrangements under different loading conditions. <i>Materials Science & Microstructure and Processing</i> , 2005 , 400-401, 158-161	5.3	44	
149	The origin of surface microstructure evolution in sliding friction. <i>Scripta Materialia</i> , 2018 , 153, 63-67	5.6	44	
148	First-principles study of thermodynamical and mechanical stabilities of thin copper film on tantalum. <i>Physical Review B</i> , 2007 , 76,	3.3	43	

147	Bond order potentials for fracture, wear, and plasticity. MRS Bulletin, 2012, 37, 493-503	3.2	42
146	Microstructure evolution and deformation mechanisms during high rate and cryogenic sliding of copper. <i>Acta Materialia</i> , 2018 , 161, 138-149	8.4	42
145	Atomistic simulations of the formation and destruction of nanoindentation contacts in tungsten. <i>Physical Review B</i> , 2006 , 73,	3.3	41
144	Interatomic potential for the Cu-Ta system and its application to surface wetting and dewetting. <i>Physical Review B</i> , 2008 , 77,	3.3	40
143	On the potential of tungstenNanadium composites for high temperature application with wide-range thermal operation window. <i>Journal of Nuclear Materials</i> , 2010 , 400, 218-231	3.3	39
142	Energy radiation and limiting speeds of fast moving edge dislocations in tungsten. <i>Physical Review B</i> , 2008 , 77,	3.3	39
141	Three-dimensional grain structure of sintered bulk strontium titanate from X-ray diffraction contrast tomography. <i>Scripta Materialia</i> , 2012 , 66, 1-4	5.6	37
140	Formation and Oxidation of Linear Carbon Chains and Their Role in the Wear of Carbon Materials. <i>Tribology Letters</i> , 2011 , 44, 355-365	2.8	37
139	Grain growth anomaly in strontium titanate. Scripta Materialia, 2009, 61, 584-587	5.6	37
138	Aspect ratio and stochastic effects in the plasticity of uniformly loaded micrometer-sized specimens. <i>Acta Materialia</i> , 2011 , 59, 2937-2947	8.4	36
137	Accommodation processes during deformation of nanocrystalline palladium. <i>Acta Materialia</i> , 2010 , 58, 5491-5501	8.4	36
136	Thermal activation of crack-tip plasticity: The brittle or ductile response of a stationary crack loaded to failure. <i>Physical Review B</i> , 2005 , 71,	3.3	36
135	Defect modelling: the need for angularly dependent potentials. <i>Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing,</i> 1995 , 192-193, 24-30	5.3	36
134	Potential-induced degradation in solar cells: Electronic structure and diffusion mechanism of sodium in stacking faults of silicon. <i>Journal of Applied Physics</i> , 2014 , 116, 093510	2.5	35
133	Materials response to glancing incidence femtosecond laser ablation. <i>Acta Materialia</i> , 2017 , 124, 37-46	8.4	34
132	Microstructure-based description of the deformation of metals: Theory and application. <i>Jom</i> , 2011 , 63, 26-33	2.1	34
131	Progressive Shortening of sp-Hybridized Carbon Chains through Oxygen-Induced Cleavage. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 24653-24661	3.8	34
130	Accommodation of the lattice mismatch in a Ag/Ni heterophase boundary. <i>Physical Review B</i> , 1991 , 43, 13833-13837	3.3	33

(2008-2019)

129	Solids Under Extreme Shear: Friction-Mediated Subsurface Structural Transformations. <i>Advanced Materials</i> , 2019 , 31, e1806705	24	32	
128	Ab initio investigation of surface stress response to charging of transition and noble metals. <i>Physical Review B</i> , 2012 , 85,	3.3	32	
127	Impulsive fracture of fused quartz and silicon crystals by nonlinear surface acoustic waves. <i>Journal of Applied Physics</i> , 2003 , 94, 2907-2914	2.5	32	
126	Image stresses in a free-standing thin film. <i>Modelling and Simulation in Materials Science and Engineering</i> , 1999 , 7, 781-793	2	32	
125	Dislocation microstructure evolution in cyclically twisted microsamples: a discrete dislocation dynamics simulation. <i>Modelling and Simulation in Materials Science and Engineering</i> , 2011 , 19, 074004	2	31	
124	Analysis of electronic subgap states in amorphous semiconductor oxides based on the example of Zn-Sn-O systems. <i>Physical Review B</i> , 2012 , 86,	3.3	31	
123	Interactions between lattice dislocations and twin boundaries in tungsten: A comparative atomistic simulation study. <i>Philosophical Magazine</i> , 2009 , 89, 3179-3194	1.6	31	
122	INVESTIGATION OF SIZE-EFFECTS IN MACHINING WITH GEOMETRICALLY DEFINED CUTTING EDGES. <i>Machining Science and Technology</i> , 2007 , 11, 447-473	2	31	
121	Modelling brittle and semi-brittle fracture processes. <i>Materials Science & Discourse A: Structural Materials: Properties, Microstructure and Processing,</i> 2001 , 319-321, 1-7	5.3	30	
120	Dislocation dynamics in sub-micron confinement: recent progress in Cu thin film plasticity. <i>International Journal of Materials Research</i> , 2002 , 93, 383-391		30	
119	Crack Velocities during Dynamic Fracture of Glass and Single Crystalline Silicon. <i>Physica Status Solidi A</i> , 1997 , 164, R5-R6		29	
118	Interstitial iron impurities at grain boundaries in silicon: A first-principles study. <i>Physical Review B</i> , 2015 , 91,	3.3	28	
117	Atomically smooth stress-corrosion cleavage of a hydrogen-implanted crystal. <i>Physical Review Letters</i> , 2010 , 105, 075502	7.4	28	
116	In-situ observation of damage evolution and fracture in AlSi7Mg0.3 cast alloys. <i>Engineering Fracture Mechanics</i> , 1999 , 63, 395-411	4.2	28	
115	Stages in the tribologically-induced oxidation of high-purity copper. <i>Scripta Materialia</i> , 2018 , 153, 114-1	1<u>7</u>. 6	28	
114	Dislocations in quasicrystals and their interaction with cluster-like obstacles. <i>Philosophical Magazine Letters</i> , 1998 , 78, 369-376	1	27	
113	The running-in of amorphous hydrocarbon tribocoatings: a comparison between experiment and molecular dynamics simulations. <i>International Journal of Materials Research</i> , 2008 , 99, 1136-1143	0.5	27	
112	Stress-Driven Oxidation Chemistry of Wet Silicon Surfaces. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 12077-12080	3.8	27	

111	Atomistic aspects of the deformation of NiAl. <i>Intermetallics</i> , 1999 , 7, 447-454	3.5	27
110	Quantitative voxel-to-voxel comparison of TriBeam and DCT strontium titanate three-dimensional data sets. <i>Journal of Applied Crystallography</i> , 2015 , 48, 1034-1046	3.8	26
109	Driving force and nucleation of supersonic dislocations 1999 , 6, 137-144		26
108	Mechanical assessment of ultrafine-grained nickel by microcompression experiment and finite element simulation. <i>Journal of Materials Research</i> , 2012 , 27, 266-277	2.5	25
107	An Einstein Model of Brittle Crack Propagation. <i>Physical Review Letters</i> , 1997 , 78, 78-81	7.4	24
106	INFLUENCE OF FRICTION AND PROCESS PARAMETERS ON THE SPECIFIC CUTTING FORCE AND SURFACE CHARACTERISTICS IN MICRO CUTTING. <i>Machining Science and Technology</i> , 2008 , 12, 474-497	2	24
105	Electron microscopic evidence for a tribologically induced phase transformation as the origin of wear in diamond. <i>Journal of Applied Physics</i> , 2014 , 115, 063508	2.5	23
104	Cleavage fracture and crack tip dislocation emission in B2 NiAl: An atomistic study. <i>Acta Materialia</i> , 1998 , 46, 3135-3143	8.4	23
103	High-cycle fatigue and strengthening in polycrystalline silicon. <i>Scripta Materialia</i> , 2008 , 59, 936-940	5.6	23
102	Atomistic modeling of hydrocarbon systems using analytic bond-order potentials. <i>Progress in Materials Science</i> , 2007 , 52, 230-254	42.2	23
101	Dynamic fracture of icosahedral model quasicrystals: A molecular dynamics study. <i>Physical Review B</i> , 2005 , 72,	3.3	23
100	Reversible relaxation at charged metal surfaces: An ab initio study. <i>Europhysics Letters</i> , 2008 , 84, 13002	1.6	22
99	Discrete dislocation dynamics simulations of dislocation interactions with Y 2 O 3 particles in PM2000 single crystals. <i>Philosophical Magazine</i> , 2007 , 87, 3645-3656	1.6	22
98			
<i>3</i> °	Scaling relations for crack-tip plasticity. <i>Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties</i> , 2002 , 82, 3187-3200		22
97		7.4	21
	Structure, Defects and Mechanical Properties, 2002 , 82, 3187-3200	7·4 3·3	
97	Structure, Defects and Mechanical Properties, 2002, 82, 3187-3200 Phonon emission induced dynamic fracture phenomena. Physical Review Letters, 2011, 106, 085502		21

(1997-2000)

93	Plastic deformation at short edge cracks under fatigue loading. <i>Engineering Fracture Mechanics</i> , 2000 , 66, 357-374	4.2	20	
92	Fracture studies of tungsten single crystals. <i>Materials Letters</i> , 1994 , 20, 311-317	3.3	20	
91	Comparison of mechanical behaviour of thin film simulated by discrete dislocation dynamics and continuum crystal plasticity. <i>Computational Materials Science</i> , 2009 , 45, 793-799	3.2	19	
90	Understanding of the phase transformation from fullerite to amorphous carbon at the microscopic level. <i>Physical Review Letters</i> , 2005 , 94, 165503	7.4	19	
89	Polar twin boundaries and nonconventional ferroelectric switching. <i>Applied Physics Letters</i> , 2015 , 106, 212907	3.4	18	
88	Influence of the Real Geometry of the Protrusions in Micro Textured Surfaces on Frictional Behaviour. <i>Tribology Letters</i> , 2012 , 47, 447-453	2.8	18	
87	Bond order potentials: a study of s- and sp-valent systems. <i>Journal of Physics Condensed Matter</i> , 1993 , 5, 5795-5810	1.8	18	
86	Tailoring the characteristic length scale of 3D chiral mechanical metamaterials. <i>Extreme Mechanics Letters</i> , 2019 , 32, 100553	3.9	17	
85	Atomistically enabled nonsingular anisotropic elastic representation of near-core dislocation stress fields in \exists ron. <i>Physical Review B</i> , 2015 , 91,	3.3	17	
84	In situ observation of cavitation in crossed microchannels. <i>Tribology International</i> , 2012 , 55, 81-86	4.9	17	
83	Evolution of mechanical response and dislocation microstructures in small-scale specimens under slightly different loading conditions. <i>Philosophical Magazine</i> , 2010 , 90, 617-628	1.6	16	
82	Simulations of stressEtrain heterogeneities in copper thin films: Texture and substrate effects. <i>Computational Materials Science</i> , 2007 , 39, 137-141	3.2	16	
81	Alloying effects on electromigration mass transport. <i>Physical Review Letters</i> , 2001 , 87, 035901	7.4	16	
8o	Boundary lubrication of heterogeneous surfaces and the onset of cavitation in frictional contacts. <i>Science Advances</i> , 2016 , 2, e1501585	14.3	16	
79	Multiscale Simulation of Plasticity in bcc Metals. <i>Annual Review of Materials Research</i> , 2015 , 45, 369-390	12.8	15	
78	Microstrain in nanocrystalline solids under load by virtual diffraction. <i>Europhysics Letters</i> , 2010 , 89, 6600	12 .6	15	
77	On the structure and mobility of dislocations in NiAl. <i>Materials Science & Dislocations A: Structural Materials: Properties, Microstructure and Processing</i> , 1997 , 233, 116-120	5.3	15	
76	On the Activation Energy for the Brittle/Ductile Transition. <i>Physica Status Solidi (B): Basic Research</i> , 1997 , 202, R1-R2	1.3	15	

75	Atomistic Study of the Interaction between Dislocations and Structural Point Defects in NiAl. <i>Physica Status Solidi A</i> , 1998 , 166, 475-488		15
74	Crack nucleation at the symmetrical tilt grain boundary in tungsten. <i>Materials Science & amp;</i> Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008 , 483-484, 329-332	5.3	15
73	The temperature dependence of the Debye-Waller factors of B2 NiAl. <i>Philosophical Magazine Letters</i> , 1996 , 73, 137-144	1	15
72	Internal stresses in a homogenized representation of dislocation microstructures. <i>Journal of the Mechanics and Physics of Solids</i> , 2015 , 84, 528-544	5	14
71	Validation of three-dimensional diffraction contrast tomography reconstructions by means of electron backscatter diffraction characterization. <i>Journal of Applied Crystallography</i> , 2013 , 46, 1145-115	5 છે .8	14
70	Atomic-scale simulation of structure and mechanical properties of Cu1⊠Agx Ni multilayer systems. <i>Acta Materialia</i> , 2018 , 150, 236-247	8.4	13
69	Dislocation injection in strontium titanate by femtosecond laser pulses. <i>Journal of Applied Physics</i> , 2015 , 118, 075901	2.5	13
68	Anticrack model for skier triggering of slab avalanches. <i>Cold Regions Science and Technology</i> , 2011 , 65, 372-381	3.8	13
67	Architectured Lattice Materials with Tunable Anisotropy: Design and Analysis of the Material Property Space with the Aid of Machine Learning. <i>Advanced Engineering Materials</i> , 2020 , 22, 2001069	3.5	12
66	Irreversibility of dislocation motion under cyclic loading due to strain gradients. <i>Scripta Materialia</i> , 2017 , 129, 69-73	5.6	12
65	Atomistic simulation of dislocation Doid interactions under cyclic loading. <i>Modelling and Simulation in Materials Science and Engineering</i> , 2010 , 18, 025006	2	12
64	Atomistic simulation study of the effect of martensitic transformation volume change on crack-tip material evolution and fracture toughness. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 1997 , 231, 151-162	5.3	12
63	Energies of defects in ordered alloys: dislocation core energies in NiAl. Acta Materialia, 1998, 46, 919-9	26 .4	12
62	Fracture of complex metallic alloys: an atomistic study of model systems. <i>Philosophical Magazine</i> , 2006 , 86, 1015-1020	1.6	12
61	Molecular Dynamic Simulation of Collision-Induced Third-Body Formation in Hydrogen-Free Diamond-Like Carbon Asperities. <i>Tribology Letters</i> , 2016 , 63, 26	2.8	11
60	Simulation of small-angle tilt grain boundaries and their response to stress. <i>Computational Materials Science</i> , 2009 , 45, 783-787	3.2	11
59	Dislocation Dacancy interactions in tungsten. <i>Modelling and Simulation in Materials Science and Engineering</i> , 2011 , 19, 074002	2	11
58	Atomistic modelling of diffusion-controlled interfacial decohesion. <i>Materials Science & amp;</i> Engineering A: Structural Materials: Properties, Microstructure and Processing, 1999 , 260, 72-79	5.3	11

57	Glass formation by severe plastic deformation of crystalline Cu Zr nano-layers. <i>Acta Materialia</i> , 2019 , 165, 577-586	8.4	11
56	Architecturing materials at mesoscale: some current trends. <i>Materials Research Letters</i> , 2021 , 9, 399-427	17.4	11
55	The influence of Helium bubbles on the critical resolved shear stress of dispersion strengthened alloys. <i>Journal of Nuclear Materials</i> , 2009 , 386-388, 112-114	3.3	10
54	Atomistic study of structure and stability of thin Ni films on Fe surfaces. <i>Philosophical Magazine</i> , 2009 , 89, 3413-3433	1.6	10
53	Similarity considerations on the simulation of turning processes of steels. <i>International Journal of Materials Research</i> , 2005 , 96, 761-769		10
52	Interatomic potentials and the simulation of fracture: C15 NbCr2. <i>International Journal of Fracture</i> , 2006 , 139, 517-526	2.3	10
51	MATERIALS SCIENCE: Enhanced: A Dislocation Crash Test. <i>Science</i> , 1998 , 279, 1489-1490	33.3	10
50	Dislocation Transport and Line Length Increase in Averaged Descriptions of Dislocations 2009,		9
49	Elastic and plastic anisotropy after straining of nanocrystalline palladium. <i>Physical Review B</i> , 2012 , 85,	3.3	9
48	Model-free Adaptive Optimal Control of Episodic Fixed-horizon Manufacturing Processes Using Reinforcement Learning. <i>International Journal of Control, Automation and Systems</i> , 2020 , 18, 1593-1604	2.9	9
47	Influence of dislocation strain fields on the diffusion of interstitial iron impurities in silicon. <i>Physical Review B</i> , 2015 , 92,	3.3	8
46	Large characteristic lengths in 3D chiral elastic metamaterials. Communications Materials, 2021, 2,	6	8
45	Interstitial iron impurities at cores of dissociated dislocations in silicon. <i>Physical Review B</i> , 2015 , 92,	3.3	7
44	Atomistic Simulations of Dislocation - Crack Interaction. <i>Journal of Solid Mechanics and Materials Engineering</i> , 2008 , 2, 1348-1359		7
43	The flow stress of NiAl single crystals below room temperature. <i>Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2001 , 319-321, 337-341	5.3	7
42	Anticrack-type fracture in brittle foam under compressive stress. Scripta Materialia, 2012, 67, 96-99	5.6	6
41	Materials science. Modeling strain hardening the hard way. <i>Science</i> , 2003 , 301, 1857-8	33.3	6
40	A deep learning approach for complex microstructure inference. <i>Nature Communications</i> , 2021 , 12, 627	217.4	6

39	Post-buckling and dynamic response of angled struts in elastic lattices. <i>Journal of the Mechanics and Physics of Solids</i> , 2019 , 133, 103693	5	5
38	The accommodation of lattice mismatch in Ag/Ni heterophase boundaries. <i>Journal of Phase Equilibria and Diffusion</i> , 1997 , 18, 556-561		5
37	Molecular dynamics simulations of crack propagation in quasicrystals. <i>Computer Physics Communications</i> , 1999 , 121-122, 536-539	4.2	5
36	Towards programmable friction: control of lubrication with ionic liquid mixtures by automated electrical regulation. <i>Scientific Reports</i> , 2020 , 10, 17634	4.9	5
35	Atomistic Study of Edge Dislocations in FCC Metals: Drag and Inertial Effects. <i>Solid Mechanics and Its Applications</i> , 2004 , 45-57	0.4	5
34	Atomistic simulations of lattice defects in tungsten. <i>International Journal of Refractory Metals and Hard Materials</i> , 2010 , 28, 698-702	4.1	4
33	Cleavage Planes of Icosahedral Quasicrystals: A Molecular Dynamics Study. <i>Materials Research Society Symposia Proceedings</i> , 2003 , 805, 318		4
32	Representations of the local atomic density. <i>Journal of Physics Condensed Matter</i> , 1998 , 10, 7983-7993	1.8	4
31	Pattern formation during deformation of metallic nanolaminates. <i>Physical Review Materials</i> , 2020 , 4,	3.2	4
30	Probabilistic Fracture Mechanics Framework Including Crack Nucleation of Rotor Forging Flaws 2019 ,		4
29	Influence of Interstitial Oxygen on the Tribology of Ti6Al4V. <i>Tribology Letters</i> , 2020 , 68, 1	2.8	4
28	A mechanism-based homogenization of a dislocation source model for bending. <i>Acta Materialia</i> , 2019 , 164, 663-672	8.4	4
27	Atomistic Simulation Methods and their Application on Fracture. CISM International Centre for Mechanical Sciences, Courses and Lectures, 2010, 1-57	0.6	3
26	Scaling relations for crack-tip plasticity		3
25	Linking Micro- and Macroscopic Aspects of a Dislocation Based Continuum Model by Investigating the Dislocation Double Pileup. <i>Proceedings in Applied Mathematics and Mechanics</i> , 2013 , 13, 273-274	0.2	2
24	Molecular dynamics simulation of gold solid film lubrication. <i>International Journal of Materials Research</i> , 2010 , 101, 981-988	0.5	2
23	An Application Oriented View on Materials Modeling 2005 , 2713-2718		2
22	Strengthening of silicon nitride ceramics by shot peening. <i>International Journal of Materials Research</i> , 2006 , 97, 1673-1678	0.5	2

(2022-2006)

21	Finite-Element Implementation of a Self-consistent Texture Model with a Hardening Law Based on Dislocation Densities. <i>Steel Research International</i> , 2006 , 77, 741-746	1.6	2
20	Crack propagation in perfectly ordered and random tiling quasicrystals. <i>Journal of Non-Crystalline Solids</i> , 2004 , 334-335, 453-456	3.9	2
19	A kinetic model for electromigration in face-centred cubic alloys. <i>Journal of Physics Condensed Matter</i> , 2000 , 12, 3281-3292	1.8	2
18	Optimal Process Control through Feature-Based State Tracking Along Process Chains69-74		2
17	A Three-dimensional Continuum Theory of Dislocation Plasticity - Modelling and Application to a Composite. <i>Proceedings in Applied Mathematics and Mechanics</i> , 2011 , 11, 437-438	0.2	1
16	Discrete Dislocation Dynamics Simulation of Crack-Tip Plasticity 2005 , 413-427		1
15	Discrete Dislocation Dynamics Simulation of Thin Film Plasticity 2005 , 397-412		1
14	Numerical and Experimental Study of Early Stages of the Failure of AlSi-Cast Alloys. <i>European Physical Journal Special Topics</i> , 1996 , 06, C6-123-C6-131		1
13	Atomistic Simulations of Dislocation © rack Interaction 2007, 127-135		1
12	Optimal Process Control Through Feature-Based State Tracking Along Process Chains 2013 , 69-74		1
11	High diffusivity pathways govern massively enhanced oxidation during tribological sliding. <i>Acta Materialia</i> , 2021 , 221, 117353	8.4	1
10	Combining X-Ray Diffraction Contrast Tomography and Mesoscale Grain Growth Simulations in Strontium Titanate: An Integrated Approach for the Investigation of Microstructure Evolution. Ceramic Engineering and Science Proceedings, 127-137	0.1	1
9	Atomistic Study of Structure and Mobility of Dislocations in NiAl 1997, 349-354		1
8	Height-Averaged NavierBtokes Solver for Hydrodynamic Lubrication. <i>Tribology Letters</i> , 2022 , 70, 1	2.8	1
7	Discrete and continuum modelling of size effects in architectured unstable metamaterials. <i>Continuum Mechanics and Thermodynamics</i> , 2020 , 32, 1629-1645	3.5	O
6	In situ Micro-pyrolysis of 3D Nano-printed Electron Beam Sensitive Metamaterials. <i>Microscopy and Microanalysis</i> , 2021 , 27, 83-84	0.5	O
5	Variations in strain affect friction and microstructure evolution in copper under a reciprocating tribological load. <i>Journal of Materials Research</i> , 2021 , 36, 970-981	2.5	O
4	Micromechanical fatigue experiments for validation of microstructure-sensitive fatigue simulation models. <i>International Journal of Fatigue</i> , 2022 , 160, 106824	5	O

- 3 Microstructure-based Description of the Deformation of Metals: Theory and Application 2011, 87-98
- Temperature dependence of crack propagation in a two-dimensional model quasicrystal.

 Philosophical Magazine, **2005**, 85, 3259-3272

1.6

An Application Oriented View on Materials Modeling **2005**, 2713-2718