Miguel Angel PavÓn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1433608/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The natural history of human papillomavirus infection. Best Practice and Research in Clinical Obstetrics and Gynaecology, 2018, 47, 2-13.	1.4	280
2	Recombinant pharmaceuticals from microbial cells: a 2015 update. Microbial Cell Factories, 2016, 15, 33.	1.9	265
3	uPA/uPAR and SERPINE1 in head and neck cancer: role in tumor resistance, metastasis, prognosis and therapy. Oncotarget, 2016, 7, 57351-57366.	0.8	120
4	Colon cancer cells colonize the lung from established liver metastases through p38 MAPK signalling andÂPTHLH. Nature Cell Biology, 2014, 16, 685-694.	4.6	117
5	Mouse models in oncogenesis and cancer therapy. Clinical and Translational Oncology, 2006, 8, 318-329.	1.2	116
6	Protein-Based Therapeutic Killing for Cancer Therapies. Trends in Biotechnology, 2018, 36, 318-335.	4.9	98
7	<scp>CXCR4</scp> expression enhances diffuse large B cell lymphoma dissemination and decreases patient survival. Journal of Pathology, 2015, 235, 445-455.	2.1	71
8	Towards protein-based viral mimetics for cancer therapies. Trends in Biotechnology, 2015, 33, 253-258.	4.9	65
9	Selective depletion of metastatic stem cells as therapy for human colorectal cancer. EMBO Molecular Medicine, 2018, 10, .	3.3	64
10	Enhanced cell migration and apoptosis resistance may underlie the association between high SERPINE1 expression and poor outcome in head and neck carcinoma patients. Oncotarget, 2015, 6, 29016-29033.	0.8	62
11	Double positivity for HPV-DNA/p16ink4a is the biomarker with strongest diagnostic accuracy and prognostic value for human papillomavirus related oropharyngeal cancer patients. Oral Oncology, 2018, 78, 137-144.	0.8	58
12	Self-assembling toxin-based nanoparticles as self-delivered antitumoral drugs. Journal of Controlled Release, 2018, 274, 81-92.	4.8	55
13	Gated Mesoporous Silica Nanoparticles Using a Doubleâ€Role Circular Peptide for the Controlled and Targetâ€Preferential Release of Doxorubicin in CXCR4â€Expresing Lymphoma Cells. Advanced Functional Materials, 2015, 25, 687-695.	7.8	54
14	Assembly of histidine-rich protein materials controlled through divalent cations. Acta Biomaterialia, 2019, 83, 257-264.	4.1	49
15	Nanostructured toxins for the selective destruction of drug-resistant human CXCR4+ colorectal cancer stem cells. Journal of Controlled Release, 2020, 320, 96-104.	4.8	48
16	Higher metastatic efficiency of KRas G12V than KRas G13D in a colorectal cancer model. FASEB Journal, 2015, 29, 464-476.	0.2	43
17	Divalent Cations: A Molecular Glue for Protein Materials. Trends in Biochemical Sciences, 2020, 45, 992-1003.	3.7	42
18	An Auristatin nanoconjugate targeting CXCR4+ leukemic cells blocks acute myeloid leukemia dissemination. Journal of Hematology and Oncology, 2020, 13, 36.	6.9	39

#	Article	IF	CITATIONS
19	A CXCR4-targeted nanocarrier achieves highly selective tumor uptake in diffuse large B-cell lymphoma mouse models. Haematologica, 2020, 105, 741-753.	1.7	36
20	Cancer-specific uptake of a liganded protein nanocarrier targeting aggressive CXCR4 + colorectal cancer models. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 1987-1996.	1.7	34
21	Peptideâ€Based Nanostructured Materials with Intrinsic Proapoptotic Activities in CXCR4 ⁺ Solid Tumors. Advanced Functional Materials, 2017, 27, 1700919.	7.8	32
22	Release of targeted protein nanoparticles from functional bacterial amyloids: A death star-like approach. Journal of Controlled Release, 2018, 279, 29-39.	4.8	30
23	Bacterial mimetics of endocrine secretory granules as immobilized in vivo depots for functional protein drugs. Scientific Reports, 2016, 6, 35765.	1.6	28
24	Effect of serpinE1 overexpression on the primary tumor and lymph node, and lung metastases in head and neck squamous cell carcinoma. Head and Neck, 2019, 41, 429-439.	0.9	28
25	Sheltering DNA in self-organizing, protein-only nano-shells as artificial viruses for gene delivery. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, 535-541.	1.7	27
26	Rational engineering of single-chain polypeptides into protein-only, BBB-targeted nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 1241-1251.	1.7	26
27	Protein-only, antimicrobial peptide-containing recombinant nanoparticles with inherent built-in antibacterial activity. Acta Biomaterialia, 2017, 60, 256-263.	4.1	26
28	Selective delivery of T22-PE24-H6 to CXCR4 ⁺ diffuse large B-cell lymphoma cells leads to wide therapeutic index in a disseminated mouse model. Theranostics, 2020, 10, 5169-5180.	4.6	22
29	Stroma-derived HGF drives metabolic adaptation of colorectal cancer to angiogenesis inhibitors. Oncotarget, 2017, 8, 38193-38213.	0.8	22
30	Lurbinectedin induces depletion of tumor-associated macrophages (TAM), an essential component of its <i>in vivo</i> synergism with gemcitabine. DMM Disease Models and Mechanisms, 2016, 9, 1461-1471.	1.2	21
31	Intrinsic functional and architectonic heterogeneity of tumor-targeted protein nanoparticles. Nanoscale, 2017, 9, 6427-6435.	2.8	21
32	Protein-driven nanomedicines in oncotherapy. Current Opinion in Pharmacology, 2019, 47, 1-7.	1.7	21
33	Human papillomavirus in premalignant oral lesions: No evidence of association in a Spanish cohort. PLoS ONE, 2019, 14, e0210070.	1.1	20
34	A novel inhibitor of focal adhesion signaling induces caspase-independent cell death in diffuse large B-cell lymphoma. Blood, 2011, 118, 4411-4420.	0.6	18
35	MKC-Quatsomes: a stable nanovesicle platform for bio-imaging and drug-delivery applications. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 24, 102136.	1.7	17
36	CKMT1 and NCOA1 expression as a predictor of clinical outcome in patients with advancedâ€stage head and neck squamous cell carcinoma. Head and Neck, 2016, 38, E1392-403.	0.9	16

Miguel Angel PavÓn

#	Article	IF	CITATIONS
37	Specific Cytotoxic Effect of an Auristatin Nanoconjugate Towards CXCR4+ Diffuse Large B-Cell Lymphoma Cells. International Journal of Nanomedicine, 2021, Volume 16, 1869-1888.	3.3	16
38	A refined cocktailing of pro-apoptotic nanoparticles boosts anti-tumor activity. Acta Biomaterialia, 2020, 113, 584-596.	4.1	14
39	High RAB 25 expression is associated with good clinical outcome in patients with locally advanced head and neck squamous cell carcinoma. Cancer Medicine, 2013, 2, 950-963.	1.3	13
40	Self-assembling as regular nanoparticles dramatically minimizes photobleaching of tumour-targeted GFP. Acta Biomaterialia, 2020, 103, 272-280.	4.1	13
41	Switching cell penetrating and CXCR4-binding activities of nanoscale-organized arginine-rich peptides. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 1777-1786.	1.7	12
42	Collaborative membrane activity and receptor-dependent tumor cell targeting for precise nanoparticle delivery in CXCR4+ colorectal cancer. Acta Biomaterialia, 2019, 99, 426-432.	4.1	11
43	Antineoplastic effect of a diphtheria toxin-based nanoparticle targeting acute myeloid leukemia cells overexpressing CXCR4. Journal of Controlled Release, 2021, 335, 117-129.	4.8	11
44	CXCR7 expression in diffuse large B-cell lymphoma identifies a subgroup of CXCR4+ patients with good prognosis. PLoS ONE, 2018, 13, e0198789.	1.1	10
45	Nanostructure Empowers Active Tumor Targeting in Ligandâ€Based Molecular Delivery. Particle and Particle Systems Characterization, 2019, 36, 1900304.	1.2	9
46	The combined use of EFS, GPX2, and SPRR1A expression could distinguish favorable from poor clinical outcome among epithelialâ€ike head and neck carcinoma subtypes. Head and Neck, 2019, 41, 1830-1845.	0.9	9
47	Engineering Protein Venoms as Selfâ€Assembling CXCR4â€Targeted Cytotoxic Nanoparticles. Particle and Particle Systems Characterization, 2020, 37, 2000040.	1.2	9
48	Subcutaneous preconditioning increases invasion and metastatic dissemination in colorectal cancer models. DMM Disease Models and Mechanisms, 2014, 7, 387-96.	1.2	8
49	Focal Adhesion Genes Refine the Intermediate-Risk Cytogenetic Classification of Acute Myeloid Leukemia. Cancers, 2018, 10, 436.	1.7	8
50	Targeting in Cancer Therapies. Medical Sciences (Basel, Switzerland), 2016, 4, 6.	1.3	7
51	<i>NEDD9</i> , an independent good prognostic factor in intermediate-risk acute myeloid leukemia patients. Oncotarget, 2017, 8, 76003-76014.	0.8	5
52	A diphtheria toxin-based nanoparticle achieves specific cytotoxic effect on CXCR4+ lymphoma cells without toxicity in immunocompromised and immunocompetent mice. Biomedicine and Pharmacotherapy, 2022, 150, 112940.	2.5	4
53	Risk of distant metastases in head and neck carcinoma patients and myeloperoxidase (MPO) expression Journal of Clinical Oncology, 2016, 34, 6067-6067.	0.8	2