
Marcel Kuypers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1432998/publications.pdf Version: 2024-02-01

MADCEL KLIVDEDS

#	Article	IF	CITATIONS
1	Niche partitioning by photosynthetic plankton as a driver of CO2-fixation across the oligotrophic South Pacific Subtropical Ocean. ISME Journal, 2022, 16, 465-476.	4.4	10
2	The rate and fate of N2 and C fixation by marine diatom-diazotroph symbioses. ISME Journal, 2022, 16, 477-487.	4.4	11
3	How low can they go? Aerobic respiration by microorganisms under apparent anoxia. FEMS Microbiology Reviews, 2022, 46, .	3.9	26
4	Diverse methylotrophic methanogenic archaea cause high methane emissions from seagrass meadows. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	36
5	Quantification of archaea-driven freshwater nitrification from single cell to ecosystem levels. ISME Journal, 2022, 16, 1647-1656.	4.4	10
6	Response of benthic nitrogen cycling to estuarine hypoxia. Limnology and Oceanography, 2021, 66, 652-666.	1.6	27
7	Assigning Function to Phylogeny: FISH-nanoSIMS. Methods in Molecular Biology, 2021, 2246, 207-224.	0.4	4
8	Anaerobic endosymbiont generates energy for ciliate host by denitrification. Nature, 2021, 591, 445-450.	13.7	53
9	Sulfur cycling in oceanic oxygen minimum zones. Limnology and Oceanography, 2021, 66, 2360-2392.	1.6	34
10	Small sinking particles control anammox rates in the Peruvian oxygen minimum zone. Nature Communications, 2021, 12, 3235.	5.8	33
11	Purple sulfur bacteria fix N2 via molybdenum-nitrogenase in a low molybdenum Proterozoic ocean analogue. Nature Communications, 2021, 12, 4774.	5.8	24
12	Terrestrial-type nitrogen-fixing symbiosis between seagrass and a marine bacterium. Nature, 2021, 600, 105-109.	13.7	48
13	Anaerobic ammonium oxidation is a major N-sink in aquifer systems around the world. ISME Journal, 2020, 14, 151-163.	4.4	54
14	Rapid microbial diversification of dissolved organic matter in oceanic surface waters leads to carbon sequestration. Scientific Reports, 2020, 10, 13025.	1.6	32
15	Single cell analyses reveal contrasting life strategies of the two main nitrifiers in the ocean. Nature Communications, 2020, 11, 767.	5.8	67
16	The effect of sediment grain properties and porewater flow on microbial abundance and respiration in permeable sediments. Scientific Reports, 2020, 10, 3573.	1.6	27
17	An intracellular silver deposition method for targeted detection and chemical analysis of uncultured microorganisms. Systematic and Applied Microbiology, 2020, 43, 126086.	1.2	2
18	Link between Heterotrophic Carbon Fixation and Virulence in the Porcine Lung Pathogen Actinobacillus pleuropneumoniae. Infection and Immunity, 2019, 87, .	1.0	4

#	Article	IF	CITATIONS
19	Dark aerobic sulfide oxidation by anoxygenic phototrophs in anoxic waters. Environmental Microbiology, 2019, 21, 1611-1626.	1.8	27
20	Phosphate availability affects fixed nitrogen transfer from diazotrophs to their epibionts. ISME Journal, 2019, 13, 2701-2713.	4.4	13
21	Direct Cell Mass Measurements Expand the Role of Small Microorganisms in Nature. Applied and Environmental Microbiology, 2019, 85, .	1.4	22
22	Untangling hidden nutrient dynamics: rapid ammonium cycling and single-cell ammonium assimilation in marine plankton communities. ISME Journal, 2019, 13, 1960-1974.	4.4	49
23	<i>Arcobacter peruensis</i> sp. nov., a Chemolithoheterotroph Isolated from Sulfide- and Organic-Rich Coastal Waters off Peru. Applied and Environmental Microbiology, 2019, 85, .	1.4	36
24	Cyanate and urea are substrates for nitrification by Thaumarchaeota in the marine environment. Nature Microbiology, 2019, 4, 234-243.	5.9	103
25	N ₂ fixation in freeâ€floating filaments of <i>Trichodesmium</i> is higher than in transiently suboxic colony microenvironments. New Phytologist, 2019, 222, 852-863.	3.5	27
26	Insights into the Fundamental Physiology of the Uncultured Fe-Oxidizing Bacterium Leptothrix ochracea. Applied and Environmental Microbiology, 2018, 84, .	1.4	19
27	The microbial nitrogen-cycling network. Nature Reviews Microbiology, 2018, 16, 263-276.	13.6	2,269
28	Substrate and electron donor limitation induce phenotypic heterogeneity in different metabolic activities in a green sulphur bacterium. Environmental Microbiology Reports, 2018, 10, 179-183.	1.0	23
29	Microbial pathways for nitrogen loss in an upland soil. Environmental Microbiology, 2018, 20, 1723-1738.	1.8	76
30	Metabolic versatility of a novel N ₂ â€fixing Alphaproteobacterium isolated from a marine oxygen minimum zone. Environmental Microbiology, 2018, 20, 755-768.	1.8	29
31	Single-cell imaging of phosphorus uptake shows that key harmful algae rely on different phosphorus sources for growth. Scientific Reports, 2018, 8, 17182.	1.6	44
32	Bloom of a denitrifying methanotroph, â€~ <i>Candidatus</i> Methylomirabilis limnetica', in a deep stratified lake. Environmental Microbiology, 2018, 20, 2598-2614.	1.8	87
33	Oxygen minimum zone cryptic sulfur cycling sustained by offshore transport of key sulfur oxidizing bacteria. Nature Communications, 2018, 9, 1729.	5.8	93
34	Metabolic specialization of denitrifiers in permeable sediments controls N ₂ O emissions. Environmental Microbiology, 2018, 20, 4486-4502.	1.8	27
35	Denitrifying community in coastal sediments performs aerobic and anaerobic respiration simultaneously. ISME Journal, 2017, 11, 1799-1812.	4.4	126
36	Regulation of benthic oxygen fluxes in permeable sediments of the coastal ocean. Limnology and Oceanography, 2017, 62, 1935-1954.	1.6	64

#	Article	IF	CITATIONS
37	N2 production rates limited by nitrite availability in the Bay of Bengal oxygen minimum zone. Nature Geoscience, 2017, 10, 24-29.	5.4	180
38	Nutrients that limit growth in the ocean. Current Biology, 2017, 27, R474-R478.	1.8	136
39	Microbial formation of labile organic carbon in Antarctic glacial environments. Nature Geoscience, 2017, 10, 356-359.	5.4	70
40	Intense biological phosphate uptake onto particles in subeuphotic continental margin waters. Geophysical Research Letters, 2017, 44, 2825-2834.	1.5	5
41	Adaptability as the key to success for the ubiquitous marine nitrite oxidizer <i>Nitrococcus</i> . Science Advances, 2017, 3, e1700807.	4.7	74
42	A fight for scraps of ammonia. Nature, 2017, 549, 162-163.	13.7	26
43	Cell-to-cell variation and specialization in sugar metabolism in clonal bacterial populations. PLoS Genetics, 2017, 13, e1007122.	1.5	58
44	Enhanced Nitrogen Loss by Eddy-Induced Vertical Transport in the Offshore Peruvian Oxygen Minimum Zone. PLoS ONE, 2017, 12, e0170059.	1.1	20
45	Size and Carbon Content of Sub-seafloor Microbial Cells at Landsort Deep, Baltic Sea. Frontiers in Microbiology, 2016, 7, 1375.	1.5	24
46	Extensive nitrogen loss from permeable sediments off Northâ€West Africa. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 1144-1157.	1.3	19
47	High rates of microbial dinitrogen fixation and sulfate reduction associated with the Mediterranean seagrass Posidonia oceanica. Systematic and Applied Microbiology, 2016, 39, 476-483.	1.2	56
48	Application of the isotope pairing technique in sediments where anammox, denitrification, and dissimilatory nitrate reduction to ammonium coexist. Limnology and Oceanography: Methods, 2016, 14, 801-815.	1.0	53
49	Cellâ€specific nitrogen―and carbonâ€fixation of cyanobacteria in a temperate marine system (Baltic Sea). Environmental Microbiology, 2016, 18, 4596-4609.	1.8	61
50	Intensive cryptic microbial iron cycling in the low iron water column of the meromictic Lake Cadagno. Environmental Microbiology, 2016, 18, 5288-5302.	1.8	65
51	The small unicellular diazotrophic symbiont, UCYN-A, is a key player in the marine nitrogen cycle. Nature Microbiology, 2016, 1, 16163.	5.9	194
52	Phenotypic heterogeneity driven by nutrient limitation promotes growth in fluctuating environments. Nature Microbiology, 2016, 1, 16055.	5.9	154
53	Coupled nitrification–denitrification leads to extensive N loss in subtidal permeable sediments. Limnology and Oceanography, 2016, 61, 1033-1048.	1.6	90
54	N2-fixation, ammonium release and N-transfer to the microbial and classical food web within a plankton community. ISME Journal, 2016, 10, 450-459.	4.4	87

4

#	Article	IF	CITATIONS
55	High cell-specific rates of nitrogen and carbon fixation by the cyanobacterium <i>Aphanizomenon</i> sp. at low temperatures in the Baltic Sea. FEMS Microbiology Ecology, 2015, 91, fiv131.	1.3	20
56	Use of carbon monoxide and hydrogen by a bacteria–animal symbiosis from seagrass sediments. Environmental Microbiology, 2015, 17, 5023-5035.	1.8	37
57	The impact of bedform migration on benthic oxygen fluxes. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 2229-2242.	1.3	54
58	A laboratory model of marine snow: Preparation and characterization of porous fiber particles. Limnology and Oceanography: Methods, 2015, 13, 664-671.	1.0	3
59	Light-Dependent Aerobic Methane Oxidation Reduces Methane Emissions from Seasonally Stratified Lakes. PLoS ONE, 2015, 10, e0132574.	1.1	120
60	A division of labour combined. Nature, 2015, 528, 487-488.	13.7	21
61	Methane oxidation coupled to oxygenic photosynthesis in anoxic waters. ISME Journal, 2015, 9, 1991-2002.	4.4	135
62	The effect of nutrients on carbon and nitrogen fixation by the UCYN-A–haptophyte symbiosis. ISME Journal, 2015, 9, 1635-1647.	4.4	83
63	Aerobic Microbial Respiration In Oceanic Oxygen Minimum Zones. PLoS ONE, 2015, 10, e0133526.	1.1	99
64	Polysulfides as Intermediates in the Oxidation of Sulfide to Sulfate by Beggiatoa spp. Applied and Environmental Microbiology, 2014, 80, 629-636.	1.4	100
65	Temperature response of denitrification and anammox reveals the adaptation of microbial communities to in situ temperatures in permeable marine sediments that span 50° in latitude. Biogeosciences, 2014, 11, 309-320.	1.3	64
66	Epifluorescence, SEM, TEM and nanoSIMS image analysis of the cold phenotype of <i>Clostridium psychrophilum</i> at subzero temperatures. FEMS Microbiology Ecology, 2014, 90, 869-882.	1.3	14
67	Responses of the coastal bacterial community to viral infection of the algae <i>Phaeocystis globosa</i> . ISME Journal, 2014, 8, 212-225.	4.4	68
68	Distribution of a consortium between unicellular algae and the <scp><scp>N₂</scp> </scp> fixing cyanobacterium <scp>UCYN</scp> â€ <scp>A</scp> in the North Atlantic Ocean. Environmental Microbiology, 2014, 16, 3153-3167.	1.8	38
69	Temperature response of denitrification and anaerobic ammonium oxidation rates and microbial community structure in <scp>A</scp> rctic fjord sediments. Environmental Microbiology, 2014, 16, 3331-3344.	1.8	84
70	Facets of diazotrophy in the oxygen minimum zone waters off Peru. ISME Journal, 2014, 8, 2180-2192.	4.4	121
71	Carbon isotope equilibration during sulphate-limited anaerobic oxidation of methane. Nature Geoscience, 2014, 7, 190-194.	5.4	147

72 Nano-Secondary Ions Mass Spectrometry (nanoSIMS) Coupled with In Situ Hybridization for Ecological Research. , 2014, , 295-303.

#	Article	IF	CITATIONS
73	Nitric oxide turnover in permeable river sediment. Limnology and Oceanography, 2014, 59, 1310-1320.	1.6	18
74	Aquatic Respiration Rate Measurements at Low Oxygen Concentrations. PLoS ONE, 2014, 9, e89369.	1.1	28
75	Are Iron-Phosphate Minerals a Sink for Phosphorus in Anoxic Black Sea Sediments?. PLoS ONE, 2014, 9, e101139.	1.1	45
76	The Fate of Nitrate in Intertidal Permeable Sediments. PLoS ONE, 2014, 9, e104517.	1.1	74
77	The metagenome of the marine anammox bacterium â€~ <i>Candidatus</i> Scalindua profunda' illustrates the versatility of this globally important nitrogen cycle bacterium. Environmental Microbiology, 2013, 15, 1275-1289.	1.8	246
78	Measuring carbon and <scp><scp>N₂</scp> </scp> fixation in field populations of colonial and freeâ€iving unicellular cyanobacteria using nanometerâ€scale secondary ion mass spectrometry ¹ . Journal of Phycology, 2013, 49, 502-516.	1.0	55
79	Nitrogen isotope effects induced by anammox bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18994-18999.	3.3	174
80	Viral infection of <i>Phaeocystis globosa</i> impedes release of chitinous starâ€like structures: quantification using single cell approaches. Environmental Microbiology, 2013, 15, 1441-1451.	1.8	19
81	Isolation and physiological characterization of psychrophilic denitrifying bacteria from permanently cold <scp>A</scp> rctic fjord sediments (<scp>S</scp> valbard, <scp>N</scp> orway). Environmental Microbiology, 2013, 15, 1606-1618.	1.8	36
82	Effects of transient bottom water currents and oxygen concentrations on benthic exchange rates as as assessed by eddy correlation measurements. Journal of Geophysical Research: Oceans, 2013, 118, 1157-1169.	1.0	55
83	Nitrogen cycling driven by organic matter export in the South Pacific oxygen minimum zone. Nature Geoscience, 2013, 6, 228-234.	5.4	295
84	Sulfur isotopes track the global extent and dynamics of euxinia during Cretaceous Oceanic Anoxic Event 2. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18407-18412.	3.3	127
85	Cyclic 100-ka (glacial-interglacial) migration of subseafloor redox zonation on the Peruvian shelf. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18098-18103.	3.3	35
86	Anaerobic degradation of propane and butane by sulfate-reducing bacteria enriched from marine hydrocarbon cold seeps. ISME Journal, 2013, 7, 885-895.	4.4	109
87	Resolution of Conflicting Signals at the Single-Cell Level in the Regulation of Cyanobacterial Photosynthesis and Nitrogen Fixation. PLoS ONE, 2013, 8, e66060.	1.1	25
88	Giant Hydrogen Sulfide Plume in the Oxygen Minimum Zone off Peru Supports Chemolithoautotrophy. PLoS ONE, 2013, 8, e68661.	1.1	158
89	Anammox, denitrification and dissimilatory nitrate reduction to ammonium in the East China Sea sediment. Biogeosciences, 2013, 10, 6851-6864.	1.3	110
90	Nitrite oxidation in the Namibian oxygen minimum zone. ISME Journal, 2012, 6, 1200-1209.	4.4	244

#	Article	IF	CITATIONS
91	Doubling of marine dinitrogen-fixation rates based on direct measurements. Nature, 2012, 488, 361-364.	13.7	273
92	Intensive and extensive nitrogen loss from intertidal permeable sediments of the Wadden Sea. Limnology and Oceanography, 2012, 57, 185-198.	1.6	73
93	Unicellular Cyanobacterium Symbiotic with a Single-Celled Eukaryotic Alga. Science, 2012, 337, 1546-1550.	6.0	460
94	Zero-valent sulphur is a key intermediate in marine methane oxidation. Nature, 2012, 491, 541-546.	13.7	498
95	Heterotrophic organisms dominate nitrogen fixation in the South Pacific Gyre. ISME Journal, 2012, 6, 1238-1249.	4.4	162
96	Iron isotope and trace metal records of iron cycling in the protoâ€North Atlantic during the Cenomanianâ€Turonian oceanic anoxic event (OAEâ€2). Paleoceanography, 2012, 27, .	3.0	56
97	Benthic Nitrogen Loss in the Arabian Sea Off Pakistan. Frontiers in Microbiology, 2012, 3, 395.	1.5	30
98	Activity and abundance of denitrifying bacteria in the subsurface biosphere of diffuse hydrothermal vents of the Juan de Fuca Ridge. Biogeosciences, 2012, 9, 4661-4678.	1.3	37
99	Detecting metabolic activities in single cells, with emphasis on nanoSIMS. FEMS Microbiology Reviews, 2012, 36, 486-511.	3.9	223
100	Look@NanoSIMS – a tool for the analysis of nanoSIMS data in environmental microbiology. Environmental Microbiology, 2012, 14, 1009-1023.	1.8	202
101	15N-Labeling Experiments to Dissect the Contributions of Heterotrophic Denitrification and Anammox to Nitrogen Removal in the OMZ Waters of the Ocean. Methods in Enzymology, 2011, 486, 223-251.	0.4	72
102	Origin and fate of the secondary nitrite maximum in the Arabian Sea. Biogeosciences, 2011, 8, 1565-1577.	1.3	87
103	Carbon, nitrogen and O2 fluxes associated with the cyanobacterium <i>Nodularia spumigena</i> in the Baltic Sea. ISME Journal, 2011, 5, 1549-1558.	4.4	98
104	Nitrogen fixation and transfer in open ocean diatom–cyanobacterial symbioses. ISME Journal, 2011, 5, 1484-1493.	4.4	337
105	Oxygen Sensitivity of Anammox and Coupled N-Cycle Processes in Oxygen Minimum Zones. PLoS ONE, 2011, 6, e29299.	1.1	228
106	Direct determination of nitrogen cycling rates and pathways in Arctic fjord sediments (Svalbard,) Tj ETQq0 0 0 r	gBT_/Overl	ock 10 Tf 50
107	Aerobic denitrification in permeable Wadden Sea sediments. ISME Journal, 2010, 4, 417-426.	4.4	189

108Novel observations of <i>Thiobacterium</i>, a sulfur-storing Gammaproteobacterium producing
gelatinous mats. ISME Journal, 2010, 4, 1031-1043.4.412

#	Article	IF	CITATIONS
109	Carbon and nitrogen fluxes associated with the cyanobacterium <i>Aphanizomenon</i> sp. in the Baltic Sea. ISME Journal, 2010, 4, 1215-1223.	4.4	106
110	Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature, 2010, 464, 543-548.	13.7	1,521
111	GeneFISH – an <i>in situ</i> technique for linking gene presence and cell identity in environmental microorganisms. Environmental Microbiology, 2010, 12, 3057-3073.	1.8	75
112	Impact of Temperature on Ladderane Lipid Distribution in Anammox Bacteria. Applied and Environmental Microbiology, 2010, 76, 1596-1603.	1.4	53
113	A rainy northern Atacama Desert during the last interglacial. Geophysical Research Letters, 2010, 37, .	1.5	20
114	Direct determination of nitrogen cycling rates and pathways in Arctic fjord sediments (Svalbard,) Tj ETQq0 0 0 rg	BT_lOverlo	ock 10 Tf 50 5
115	Mechanisms of transient nitric oxide and nitrous oxide production in a complex biofilm. ISME Journal, 2009, 3, 1301-1313.	4.4	77
116	Detoxification of sulphidic African shelf waters by blooming chemolithotrophs. Nature, 2009, 457, 581-584.	13.7	297
117	Coâ€occurrence of denitrification and nitrogen fixation in a meromictic lake, Lake Cadagno (Switzerland). Environmental Microbiology, 2009, 11, 1945-1958.	1.8	119
118	Complex nitrogen cycling in the sponge <i>Geodia barretti</i> . Environmental Microbiology, 2009, 11, 2228-2243.	1.8	286
119	Co-occurrence of denitrification and nitrogen fixation in a meromictic lake, Lake Cadagno (Switzerland). Environmental Microbiology, 2009, 11, 2190-2190.	1.8	75
120	Revising the nitrogen cycle in the Peruvian oxygen minimum zone. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 4752-4757.	3.3	677
121	Substantial ¹³ C/ ¹² C and D/H fractionation during anaerobic oxidation of methane by marine consortia enriched <i>in vitro</i> . Environmental Microbiology Reports, 2009, 1, 370-376.	1.0	111
122	A microdiversity study of anammox bacteria reveals a novel <i>Candidatus</i> Scalindua phylotype in marine oxygen minimum zones. Environmental Microbiology, 2008, 10, 3106-3119.	1.8	250
123	Environmental detection of octahaem cytochrome <i>c</i> hydroxylamine/hydrazine oxidoreductase genes of aerobic and anaerobic ammoniumâ€oxidizing bacteria. Environmental Microbiology, 2008, 10, 3140-3149.	1.8	175
124	A single-cell view on the ecophysiology of anaerobic phototrophic bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17861-17866.	3.3	388
125	Rates and regulation of anaerobic ammonium oxidation and denitrification in the Black Sea. Limnology and Oceanography, 2008, 53, 23-36.	1.6	184
126	Sizing Up the Uncultivated Majority. Science, 2007, 317, 1510-1511.	6.0	16

#	Article	IF	CITATIONS
127	Linking crenarchaeal and bacterial nitrification to anammox in the Black Sea. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 7104-7109.	3.3	493
128	Anaerobic ammonium oxidation in the Peruvian oxygen minimum zone. Limnology and Oceanography, 2007, 52, 923-933.	1.6	315
129	Shift from denitrification to anammox after inflow events in the central Baltic Sea. Limnology and Oceanography, 2007, 52, 1336-1345.	1.6	108
130	Potential Interactions of Particle-Associated Anammox Bacteria with Bacterial and Archaeal Partners in the Namibian Upwelling System. Applied and Environmental Microbiology, 2007, 73, 4648-4657.	1.4	220
131	New processes and players in the nitrogen cycle: the microbial ecology of anaerobic and archaeal ammonia oxidation. ISME Journal, 2007, 1, 19-27.	4.4	618
132	Anammox bacteria disguised as denitrifiers: nitrate reduction to dinitrogen gas via nitrite and ammonium. Environmental Microbiology, 2007, 9, 635-642.	1.8	462
133	The future of single-cell environmental microbiology. Environmental Microbiology, 2007, 9, 6-7.	1.8	53
134	Putative ammonia-oxidizing Crenarchaeota in suboxic waters of the Black Sea: a basin-wide ecological study using 16S ribosomal and functional genes and membrane lipids. Environmental Microbiology, 2007, 9, 1001-1016.	1.8	202
135	Diversity, relative abundance and metabolic potential of bacterial endosymbionts in three Bathymodiolus mussel species from cold seeps in the Gulf of Mexico. Environmental Microbiology, 2007, 9, 1423-1438.	1.8	133
136	Anaerobic ammonium-oxidizing bacteria in marine environments: widespread occurrence but low diversity. Environmental Microbiology, 2007, 9, 1476-1484.	1.8	307
137	Inorganic carbon fixation by sulfate-reducing bacteria in the Black Sea water column. Environmental Microbiology, 2007, 9, 3019-3024.	1.8	28
138	Anaerobic ammonium oxidation in a tropical freshwater system (Lake Tanganyika). Environmental Microbiology, 2006, 8, 1857-1863.	1.8	278
139	Aerobic and anaerobic methanotrophs in the Black Sea water column. Environmental Microbiology, 2006, 8, 1844-1856.	1.8	115
140	Microbial community in a sediment-hosted CO2 lake of the southern Okinawa Trough hydrothermal system. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 14164-14169.	3.3	159
141	Global impact and application of the anaerobic ammonium-oxidizing (anammox) bacteria. Biochemical Society Transactions, 2006, 34, 174-178.	1.6	77
142	Physiology and Phylogeny of Green Sulfur Bacteria Forming a Monospecific Phototrophic Assemblage at a Depth of 100 Meters in the Black Sea. Applied and Environmental Microbiology, 2005, 71, 8049-8060.	1.4	216
143	From The Cover: Massive nitrogen loss from the Benguela upwelling system through anaerobic ammonium oxidation. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 6478-6483.	3.3	664
144	Black shale deposition on the northwest African Shelf during the Cenomanian/Turonian oceanic anoxic event: Climate coupling and global organic carbon burial. Paleoceanography, 2005, 20, n/a-n/a.	3.0	137

#	Article	IF	CITATIONS
145	Biomarkers for In Situ Detection of Anaerobic Ammonium-Oxidizing (Anammox) Bacteria. Applied and Environmental Microbiology, 2005, 71, 1677-1684.	1.4	325
146	Stable Carbon Isotopic Fractionations Associated with Inorganic Carbon Fixation by Anaerobic Ammonium-Oxidizing Bacteria. Applied and Environmental Microbiology, 2004, 70, 3785-3788.	1.4	151
147	Anaerobic ammonium oxidation by anammox bacteria in the Black Sea. Nature, 2003, 422, 608-611.	13.7	1,081
148	Enhanced productivity led to increased organic carbon burial in the euxinic North Atlantic basin during the late Cenomanian oceanic anoxic event. Paleoceanography, 2002, 17, 3-1-3-13.	3.0	266
149	GEOCHEMICAL CHARACTERIZATION OF CENOMANIAN/TURONIAN BLACK SHALES FROM THE TARFAYA BASIN (SW MOROCCO). RELATIONSHIPS BETWEEN PALAEOENVIRONMENTAL CONDITIONS AND EARLY SULPHURIZATION OF SEDIMENTARY ORGANIC MATTER1. Journal of Petroleum Geology, 2002, 25, 325-350.	0.9	75
150	Massive Expansion of Marine Archaea During a Mid-Cretaceous Oceanic Anoxic Event. Science, 2001, 293, 92-95.	6.0	240
151	A large and abrupt fall in atmospheric CO2 concentration during Cretaceous times. Nature, 1999, 399, 342-345.	13.7	216