Huilin Pan

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1432788/huilin-pan-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 65
 19,673
 43
 69

 papers
 citations
 h-index
 g-index

 69
 22,648
 20.9
 6.91

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
65	Adjusting the local solvation structures and hydrogen bonding networks for stable aqueous batteries with reduced cost. <i>Journal of Energy Chemistry</i> , 2022 , 68, 411-419	12	1
64	Advanced Buffering Acidic Aqueous Electrolytes for Ultra-Long Life Aqueous Zinc-Ion Batteries <i>Small</i> , 2022 , e2200742	11	5
63	The Quest for Stable Potassium-Ion Battery Chemistry. <i>Advanced Materials</i> , 2021 , e2106876	24	10
62	Manipulating Zn anode reactions through salt anion involving hydrogen bonding network in aqueous electrolytes with PEO additive. <i>Nano Energy</i> , 2021 , 82, 105739	17.1	40
61	Engineering Solid Electrolyte Interface at Nano-Scale for High-Performance Hard Carbon in Sodium-Ion Batteries. <i>Advanced Functional Materials</i> , 2021 , 31, 2100278	15.6	22
60	Effects of water-based binders on electrochemical performance of manganese dioxide cathode in mild aqueous zinc batteries 2021 , 3, 473-481		13
59	Cathodes for Aqueous Zn-Ion Batteries: Materials, Mechanisms, and Kinetics. <i>Chemistry - A European Journal</i> , 2021 , 27, 830-860	4.8	31
58	Value personal growth. <i>Nature Energy</i> , 2021 , 6, 4-4	62.3	
57	Surface/Interface Structure and Chemistry of LithiumBulfur Batteries: From Density Functional Theory Calculations Perspective. <i>Advanced Energy and Sustainability Research</i> , 2021 , 2, 2100007	1.6	9
56	Tailoring the Stability and Kinetics of Zn Anodes through Trace Organic Polymer Additives in Dilute Aqueous Electrolyte. <i>ACS Energy Letters</i> , 2021 , 6, 3236-3243	20.1	26
55	A lithium-sulfur battery with a solution-mediated pathway operating under lean electrolyte conditions. <i>Nano Energy</i> , 2020 , 76, 105041	17.1	14
54	Excellent Cycling Stability of Sodium Anode Enabled by a Stable Solid Electrolyte Interphase Formed in Ether-Based Electrolytes. <i>Advanced Functional Materials</i> , 2020 , 30, 2001151	15.6	27
53	Rechargeable Mild Aqueous Zinc Batteries for Grid Storage. <i>Advanced Energy and Sustainability Research</i> , 2020 , 1, 2000026	1.6	5
52	Reaction heterogeneity in practical high-energy lithium ulfur pouch cells. <i>Energy and Environmental Science</i> , 2020 , 13, 3620-3632	35.4	59
51	Highly Reversible Sodium Ion Batteries Enabled by Stable Electrolyte-Electrode Interphases. <i>ACS Energy Letters</i> , 2020 , 5, 3212-3220	20.1	40
50	Stabilizing Zinc Anode Reactions by Polyethylene Oxide Polymer in Mild Aqueous Electrolytes. <i>Advanced Functional Materials</i> , 2020 , 30, 2003932	15.6	78
49	Monitoring the State-of-Charge of a Vanadium Redox Flow Battery with the Acoustic Attenuation Coefficient: An In Operando Noninvasive Method. <i>Small Methods</i> , 2019 , 3, 1900494	12.8	8

(2017-2019)

48	Monolithic solidelectrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization. <i>Nature Energy</i> , 2019 , 4, 796-805	62.3	325
47	Electrolyte Effect on the Electrochemical Performance of Mild Aqueous Zinc-Electrolytic Manganese Dioxide Batteries. <i>ACS Applied Materials & Dioxide Batteries</i> .	9.5	28
46	Joint Charge Storage for High-Rate Aqueous Zinc-Manganese Dioxide Batteries. <i>Advanced Materials</i> , 2019 , 31, e1900567	24	163
45	High-energy lithium metal pouch cells with limited anode swelling and long stable cycles. <i>Nature Energy</i> , 2019 , 4, 551-559	62.3	283
44	Enabling High-Voltage Lithium-Metal Batteries under Practical Conditions. <i>Joule</i> , 2019 , 3, 1662-1676	27.8	272
43	Rechargeable Lithium Metal Batteries 2019 , 147-203		
42	Critical Parameters for Evaluating Coin Cells and Pouch Cells of Rechargeable Li-Metal Batteries. <i>Joule</i> , 2019 , 3, 1094-1105	27.8	219
41	Bridging the academic and industrial metrics for next-generation practical batteries. <i>Nature Nanotechnology</i> , 2019 , 14, 200-207	28.7	255
40	Addressing Passivation in LithiumBulfur Battery Under Lean Electrolyte Condition. <i>Advanced Functional Materials</i> , 2018 , 28, 1707234	15.6	111
39	Low-Defect and Low-Porosity Hard Carbon with High Coulombic Efficiency and High Capacity for Practical Sodium Ion Battery Anode. <i>Advanced Energy Materials</i> , 2018 , 8, 1703238	21.8	262
38	High-Voltage Lithium-Metal Batteries Enabled by Localized High-Concentration Electrolytes. <i>Advanced Materials</i> , 2018 , 30, e1706102	24	452
37	Tailored Reaction Route by Micropore Confinement for Liß Batteries Operating under Lean Electrolyte Conditions. <i>Advanced Energy Materials</i> , 2018 , 8, 1800590	21.8	42
36	Detrimental Effects of Chemical Crossover from the Lithium Anode to Cathode in Rechargeable Lithium Metal Batteries. <i>ACS Energy Letters</i> , 2018 , 3, 2921-2930	20.1	51
35	Lean Electrolyte Batteries: Addressing Passivation in LithiumBulfur Battery Under Lean Electrolyte Condition (Adv. Funct. Mater. 38/2018). <i>Advanced Functional Materials</i> , 2018 , 28, 1870275	15.6	5
34	Non-flammable electrolytes with high salt-to-solvent ratios for Li-ion and Li-metal batteries. <i>Nature Energy</i> , 2018 , 3, 674-681	62.3	357
33	Manipulating AdsorptionInsertion Mechanisms in Nanostructured Carbon Materials for High-Efficiency Sodium Ion Storage. <i>Advanced Energy Materials</i> , 2017 , 7, 1700403	21.8	486
32	Improving Lithium-Sulfur Battery Performance under Lean Electrolyte through Nanoscale Confinement in Soft Swellable Gels. <i>Nano Letters</i> , 2017 , 17, 3061-3067	11.5	99
31	Multinuclear NMR Study of the Solid Electrolyte Interface Formed in Lithium Metal Batteries. <i>ACS Applied Materials & Applied </i>	9.5	36

30	Elucidating the Solvation Structure and Dynamics of Lithium Polysulfides Resulting from Competitive Salt and Solvent Interactions. <i>Chemistry of Materials</i> , 2017 , 29, 3375-3379	9.6	78
29	Ammonium Additives to Dissolve Lithium Sulfide through Hydrogen Binding for High-Energy Lithium-Sulfur Batteries. <i>ACS Applied Materials & Energy Sulfur Batteries</i> (1998) 100 Applied Materials (1998) 100 Applied Materia	9.5	51
28	Non-encapsulation approach for high-performance LiB batteries through controlled nucleation and growth. <i>Nature Energy</i> , 2017 , 2, 813-820	62.3	256
27	Effects of Anion Mobility on Electrochemical Behaviors of LithiumBulfur Batteries. <i>Chemistry of Materials</i> , 2017 , 29, 9023-9029	9.6	28
26	Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. <i>Nature Energy</i> , 2016 , 1,	62.3	1461
25	Tunable Oxygen Functional Groups as Electrocatalysts on Graphite Felt Surfaces for All-Vanadium Flow Batteries. <i>ChemSusChem</i> , 2016 , 9, 1455-61	8.3	52
24	Hard carbon nanoparticles as high-capacity, high-stability anodic materials for Na-ion batteries. <i>Nano Energy</i> , 2016 , 19, 279-288	17.1	289
23	Restricting the Solubility of Polysulfides in Li-S Batteries Via Electrolyte Salt Selection. <i>Advanced Energy Materials</i> , 2016 , 6, 1600160	21.8	57
22	On the Way Toward Understanding Solution Chemistry of Lithium Polysulfides for High Energy Liß Redox Flow Batteries. <i>Advanced Energy Materials</i> , 2015 , 5, 1500113	21.8	103
21	Following the transient reactions in lithium-sulfur batteries using an in situ nuclear magnetic resonance technique. <i>Nano Letters</i> , 2015 , 15, 3309-16	11.5	88
20	Direct Observation of the Redistribution of Sulfur and Polysufides in Liß Batteries During the First Cycle by In Situ X-Ray Fluorescence Microscopy. <i>Advanced Energy Materials</i> , 2015 , 5, 1500072	21.8	74
19	High Energy Density LithiumBulfur Batteries: Challenges of Thick Sulfur Cathodes. <i>Advanced Energy Materials</i> , 2015 , 5, 1402290	21.8	424
18	Alkali-Ion Storage Behaviour in Spinel Lithium Titanate Electrodes. <i>ChemElectroChem</i> , 2015 , 2, 1678-16	81 4.3	3
17	Electrospun Na3V2(PO4)3/C nanofibers as stable cathode materials for sodium-ion batteries. <i>Nanoscale</i> , 2014 , 6, 5081-6	7.7	235
16	Lewis acid-base interactions between polysulfides and metal organic framework in lithium sulfur batteries. <i>Nano Letters</i> , 2014 , 14, 2345-52	11.5	529
15	Materials Science and Materials Chemistry for Large Scale Electrochemical Energy Storage: From Transportation to Electrical Grid. <i>Advanced Functional Materials</i> , 2013 , 23, 929-946	15.6	516
14	Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. <i>Energy and Environmental Science</i> , 2013 , 6, 2338	35.4	2419
13	A size-dependent sodium storage mechanism in Li4Ti5O12 investigated by a novel characterization technique combining in situ X-ray diffraction and chemical sodiation. <i>Nano Letters</i> , 2013 , 13, 4721-7	11.5	195

LIST OF PUBLICATIONS

12	Direct atomic-scale confirmation of three-phase storage mechanism in Lillio Landes for room-temperature sodium-ion batteries. <i>Nature Communications</i> , 2013 , 4, 1870	17.4	577
11	Sodium Storage and Transport Properties in Layered Na2Ti3O7 for Room-Temperature Sodium-Ion Batteries. <i>Advanced Energy Materials</i> , 2013 , 3, 1186-1194	21.8	401
10	Controlled Nucleation and Growth Process of Li2S2/Li2S in Lithium-Sulfur Batteries. <i>Journal of the Electrochemical Society</i> , 2013 , 160, A1992-A1996	3.9	82
9	How to Obtain Reproducible Results for Lithium Sulfur Batteries?. <i>Journal of the Electrochemical Society</i> , 2013 , 160, A2288-A2292	3.9	136
8	Carbon coated Na3V2(PO4)3 as novel electrode material for sodium ion batteries. <i>Electrochemistry Communications</i> , 2012 , 14, 86-89	5.1	596
7	A soft approach to encapsulate sulfur: polyaniline nanotubes for lithium-sulfur batteries with long cycle life. <i>Advanced Materials</i> , 2012 , 24, 1176-81	24	881
6	Sodium ion insertion in hollow carbon nanowires for battery applications. <i>Nano Letters</i> , 2012 , 12, 3783-	-711.5	1322
5	High capacity, reversible alloying reactions in SnSb/C nanocomposites for Na-ion battery applications. <i>Chemical Communications</i> , 2012 , 48, 3321-3	5.8	538
4	Improved Li-storage performance of Li4Ti5O12 coated with C-N compounds derived from pyrolysis of urea through a low-temperature approach. <i>ChemSusChem</i> , 2012 , 5, 526-9	8.3	50
3	Sandwich-type functionalized graphene sheet-sulfur nanocomposite for rechargeable lithium batteries. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 7660-5	3.6	324
2	Electrochemical energy storage for green grid. Chemical Reviews, 2011, 111, 3577-613	68.1	3471
1	Reversible sodium ion insertion in single crystalline manganese oxide nanowires with long cycle life. <i>Advanced Materials</i> , 2011 , 23, 3155-60	24	581