
Shaw M Akula

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1432603/publications.pdf Version: 2024-02-01

Shava M Δγιιιλ

#	Article	IF	CITATIONS
1	Integrin α3β1 (CD 49c/29) Is a Cellular Receptor for Kaposi's Sarcoma-Associated Herpesvirus (KSHV/HHV-8) Entry into the Target Cells. Cell, 2002, 108, 407-419.	13.5	355
2	Kaposi's Sarcoma-Associated Herpesvirus (Human Herpesvirus 8) Infection of Human Fibroblast Cells Occurs through Endocytosis. Journal of Virology, 2003, 77, 7978-7990.	1.5	181
3	Kaposi's Sarcoma-Associated Herpesvirus Induces the Phosphatidylinositol 3-Kinase-PKC-ζ-MEK-ERK Signaling Pathway in Target Cells Early during Infection: Implications for Infectivity. Journal of Virology, 2003, 77, 1524-1539.	1.5	174
4	Human Herpesvirus 8 Envelope-Associated Glycoprotein B Interacts with Heparan Sulfate-like Moieties. Virology, 2001, 284, 235-249.	1.1	154
5	Human Herpesvirus 8 Interaction with Target Cells Involves Heparan Sulfate. Virology, 2001, 282, 245-255.	1.1	152
6	Targeting GSK3 and Associated Signaling Pathways Involved in Cancer. Cells, 2020, 9, 1110.	1.8	146
7	Beyond RGD: virus interactions with integrins. Archives of Virology, 2015, 160, 2669-2681.	0.9	128
8	Human Herpesvirus 8 Envelope Glycoprotein B Mediates Cell Adhesion via Its RGD Sequence. Journal of Virology, 2003, 77, 3131-3147.	1.5	109
9	Virus reactivation: a panoramic view in human infections. Future Virology, 2011, 6, 451-463.	0.9	84
10	Raf/MEK/ERK signalling triggers reactivation of Kaposi's sarcoma-associated herpesvirus latency. Journal of General Virology, 2006, 87, 1139-1144.	1.3	64
11	RAS/RAF/MEK/ERK, PI3K/PTEN/AKT/mTORC1 and TP53 pathways and regulatory miRs as therapeutic targets in hepatocellular carcinoma. Expert Opinion on Therapeutic Targets, 2019, 23, 915-929.	1.5	59
12	B-Raf–dependent expression of vascular endothelial growth factor–A in Kaposi sarcoma–associated herpesvirus-infected human B cells. Blood, 2005, 105, 4516-4522.	0.6	44
13	Raf promotes human herpesvirus-8 (HHV-8/KSHV) infection. Oncogene, 2004, 23, 5227-5241.	2.6	40
14	Raman spectroscopy: the gateway into tomorrow's virology. Virology Journal, 2006, 3, 51.	1.4	40
15	Subcellular fractionation method to study endosomal trafficking of Kaposi's sarcoma-associated herpesvirus. Cell and Bioscience, 2016, 6, 1.	2.1	39
16	New landscapes and horizons in hepatocellular carcinoma therapy. Aging, 2020, 12, 3053-3094.	1.4	37
17	Cellular miR-150-5p may have a crucial role to play in the biology of SARS-CoV-2 infection by regulating <i>nsp10</i> gene. RNA Biology, 2022, 19, 1-11.	1.5	35
18	Cancer therapy and treatments during COVID-19 era. Advances in Biological Regulation, 2020, 77, 100739.	1.4	30

Shaw M Akula

#	Article	IF	CITATIONS
19	Spectroscopic analysis of Kaposi's sarcoma-associated herpesvirus infected cells by Raman tweezers. Journal of Virological Methods, 2005, 129, 145-151.	1.0	29
20	Cell Membrane-bound Kaposi's Sarcoma-associated Herpesvirus-encoded Glycoprotein B Promotes Virus Latency by Regulating Expression of Cellular Egr-1. Journal of Biological Chemistry, 2010, 285, 37491-37502.	1.6	27
21	Disintegrin-like domain of glycoprotein B regulates Kaposi's sarcoma-associated herpesvirus infection of cells. Journal of General Virology, 2014, 95, 1770-1782.	1.3	26
22	Resveratrol Inhibits KSHV Reactivation by Lowering the Levels of Cellular EGR-1. PLoS ONE, 2012, 7, e33364.	1.1	25
23	Abilities of berberine and chemically modified berberines to interact with metformin and inhibit proliferation of pancreatic cancer cells. Advances in Biological Regulation, 2019, 73, 100633.	1.4	25
24	Raf-Induced Vascular Endothelial Growth Factor Augments Kaposi's Sarcoma-Associated Herpesvirus Infection. Journal of Virology, 2004, 78, 13381-13390.	1.5	24
25	Vascular endothelial growth factor augments human herpesvirus-8 (HHV-8/KSHV) infection. Cancer Biology and Therapy, 2004, 3, 876-881.	1.5	22
26	Identifying cellular genes crucial for the reactivation of Kaposi's sarcoma-associated herpesvirus latency. Journal of General Virology, 2006, 87, 519-529.	1.3	22
27	miRNA-36 inhibits KSHV, EBV, HSV-2 infection of cells via stifling expression of interferon induced transmembrane protein 1 (IFITM1). Scientific Reports, 2017, 7, 17972.	1.6	21
28	Therapeutic resistance in breast cancer cells can result from deregulated EGFR signaling. Advances in Biological Regulation, 2020, 78, 100758.	1.4	21
29	TP53/miR-34a-associated signaling targets SERPINE1 expression in human pancreatic cancer. Aging, 2020, 12, 2777-2797.	1.4	21
30	Targeting the PI3K and MAPK pathways to treat Kaposi's sarcoma-associated herpes virus infection and pathogenesis. Expert Opinion on Therapeutic Targets, 2007, 11, 589-599.	1.5	20
31	CSK-3β Can Regulate the Sensitivity of MIA-PaCa-2 Pancreatic and MCF-7 Breast Cancer Cells to Chemotherapeutic Drugs, Targeted Therapeutics and Nutraceuticals. Cells, 2021, 10, 816.	1.8	19
32	miRNAs and their roles in KSHV pathogenesis. Virus Research, 2019, 266, 15-24.	1.1	16
33	Cellular and viral oncogenes: the key to unlocking unknowns of Kaposi's sarcoma-associated herpesvirus pathogenesis. Archives of Virology, 2018, 163, 2633-2643.	0.9	15
34	Influences of TP53 and the anti-aging DDR1 receptor in controlling Raf/MEK/ERK and PI3K/Akt expression and chemotherapeutic drug sensitivity in prostate cancer cell lines. Aging, 2020, 12, 10194-10210.	1.4	15
35	<scp>COVID</scp> â€19 Infection Enhances Susceptibility to Oxidative Stress–Induced Parkinsonism. Movement Disorders, 2022, 37, 1394-1404.	2.2	15
36	Triclosan induces apoptosis in Burkitt lymphoma-derived BJAB cells through caspase and JNK/MAPK pathways. Apoptosis: an International Journal on Programmed Cell Death, 2021, 26, 96-110.	2.2	13

SHAW M AKULA

#	Article	IF	CITATIONS
37	Five nanometer size highly positive silver nanoparticles are bactericidal targeting cell wall and adherent fimbriae expression. Scientific Reports, 2022, 12, 6729.	1.6	13
38	Differential regulation of the attachment of Kaposi's sarcoma-associated herpesvirus (KSHV)-infected human B cells to extracellular matrix by KSHV-encoded gB and cellular αV integrins. Cellular Microbiology, 2008, 10, 1546-1558.	1.1	12
39	IFITM1 expression is crucial to gammaherpesvirus infection, in vivo. Scientific Reports, 2018, 8, 14105.	1.6	11
40	Biology of Kaposi's sarcoma-associated herpesvirus. Frontiers in Bioscience - Landmark, 2005, 10, 2882.	3.0	10
41	Profiling of cellular microRNA responses during the early stages of KSHV infection. Archives of Virology, 2017, 162, 3293-3303.	0.9	10
42	Effects of the MDM-2 inhibitor Nutlin-3a on PDAC cells containing and lacking WT-TP53 on sensitivity to chemotherapy, signal transduction inhibitors and nutraceuticals. Advances in Biological Regulation, 2019, 72, 22-40.	1.4	10
43	GSK-3 and miRs: Master regulators of therapeutic sensitivity of cancer cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118770.	1.9	10
44	GSK-3-associated signaling is crucial to virus infection of cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118767.	1.9	10
45	β1 Integrins Mediate Tubule Formation Induced by Supernatants Derived from KSHV-Infected Cells. Intervirology, 2007, 50, 245-253.	1.2	9
46	Abilities of β-Estradiol to interact with chemotherapeutic drugs, signal transduction inhibitors and nutraceuticals and alter the proliferation of pancreatic cancer cells. Advances in Biological Regulation, 2020, 75, 100672.	1.4	9
47	Where are we with understanding of COVID-19?. Advances in Biological Regulation, 2020, 78, 100738.	1.4	8
48	Changes occurring on the cell surface during KSHV reactivation. Journal of Electron Microscopy, 2007, 56, 27-36.	0.9	7
49	Sensitivity of pancreatic cancer cells to chemotherapeutic drugs, signal transduction inhibitors and nutraceuticals can be regulated by WT-TP53. Advances in Biological Regulation, 2021, 79, 100780.	1.4	6
50	Effects of the Mutant TP53 Reactivator APR-246 on Therapeutic Sensitivity of Pancreatic Cancer Cells in the Presence and Absence of WT-TP53. Cells, 2022, 11, 794.	1.8	6
51	Where are we with understanding of COVID-19?. Advances in Biological Regulation, 2020, 77, 100745.	1.4	5
52	Bone Mineral Density and Vitamin D Levels in HIV Treatment-NaÃ⁻ve African American Individuals Randomized to Receive HIV Drug Regimens. Southern Medical Journal, 2016, 109, 712-717.	0.3	5
53	Wild type and gain of function mutant TP53 can regulate the sensitivity of pancreatic cancer cells to chemotherapeutic drugs, EGFR/Ras/Raf/MEK, and PI3K/mTORC1/GSK-3 pathway inhibitors, nutraceuticals and alter metabolic properties. Aging, 2022, 14, 3365-3386.	1.4	5
54	Raman tweezers provide the fingerprint of cells supporting the late stages of KSHV reactivation. Journal of Cellular and Molecular Medicine, 2009, 13, 1920-1932.	1.6	4

Shaw M Akula

#	Article	IF	CITATIONS
55	Effects of the MDM2 inhibitor Nutlin-3a on sensitivity of pancreatic cancer cells to berberine and modified berberines in the presence and absence of WT-TP53. Advances in Biological Regulation, 2021, , 100840.	1.4	4
56	KSHV gB associated RGD interactions promote attachment of cells by inhibiting the potential migratory signals induced by the disintegrin-like domain. BMC Cancer, 2016, 16, 148.	1.1	3
57	Membrane-Associated Kaposi Sarcoma-Associated Herpesvirus Glycoprotein B Promotes Cell Adhesion and Inhibits Migration of Cells via Upregulating IL-1β and TNF-α. Intervirology, 2017, 60, 217-226.	1.2	3
58	Preclinical efficacy and safety of novel SNAT against SARS-CoV-2 using a hamster model. Drug Delivery and Translational Research, 2022, 12, 3007-3016.	3.0	3
59	Foreword for the special issue advances in COVID-19: Biology and clinic. Advances in Biological Regulation, 2020, 77, 100744.	1.4	0