Hyung-Shik Shin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1432200/publications.pdf

Version: 2024-02-01

840776 713466 23 545 11 21 citations h-index g-index papers 23 23 23 1017 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Perovskite Solar Cells: Influence of Hole Transporting Materials on Power Conversion Efficiency. ChemSusChem, 2016, 9, 10-27.	6.8	267
2	Low temperature HFCVD synthesis of tungsten oxide thin film for high response hydrogen gas sensor application. Materials Letters, 2019, 254, 398-401.	2.6	39
3	Stable perovskite solar cells using thiazolo [5,4-d]thiazole-core containing hole transporting material. Nano Energy, 2018, 49, 372-379.	16.0	35
4	Effective D-A-D type chromophore of fumaronitrile-core and terminal alkylated bithiophene for solution-processed small molecule organic solar cells. Scientific Reports, 2015, 5, 11143.	3.3	33
5	A symmetric benzoselenadiazole based D–A–D small molecule for solution processed bulk-heterojunction organic solar cells. Journal of Industrial and Engineering Chemistry, 2020, 81, 309-316.	5.8	31
6	Furan-bridged thiazolo [5,4-d]thiazole based Dâ€"Ï€â€"Aâ€"Ï€â€"D type linear chromophore for solution-processed bulk-heterojunction organic solar cells. RSC Advances, 2015, 5, 6286-6293.	3.6	22
7	Novel thiazolothiazole based linear chromophore for small molecule organic solar cells. Chemical Physics Letters, 2013, 574, 89-93.	2.6	14
8	Asymmetric, efficient π-conjugated organic semiconducting chromophore for bulk-heterojunction organic photovoltaics. Dyes and Pigments, 2018, 149, 141-148.	3.7	14
9	New energetic indandione based planar donor for stable and efficient organic solar cells. Solar Energy, 2020, 201, 649-657.	6.1	14
10	Novel liquid crystalline oligomer with thiazolothiazole-acceptor for efficient BHJ small molecule organic solar cells. Synthetic Metals, 2014, 187, 178-184.	3.9	13
11	Solution processed bulk heterojunction organic solar cells using small organic semiconducting materials based on fluorene core unit. Optical Materials, 2019, 91, 425-432.	3.6	13
12	Efficient spirobifluorene-core electron-donor material for application in solution-processed organic solar cells. Chemical Physics Letters, 2016, 663, 137-144.	2.6	8
13	Investigation of newly designed asymmetric chromophore in view of power conversion efficiency improvements for organic solar cells. Materials Letters, 2020, 260, 126865.	2.6	8
14	Underlying effects of diiodooctane as additive on the performance of bulk heterojunction organic solar cells based small organic molecule of isatin-core moiety. Synthetic Metals, 2020, 261, 116304.	3.9	7
15	Planar D-Ï€-A Configured Dimethoxy Vinylbenzene Based Small Organic Molecule for Solution-Processed Bulk Heterojunction Organic Solar Cells. Applied Sciences (Switzerland), 2020, 10, 5743.	2.5	5
16	Benzoselenadiazoleâ€core asymmetric Dâ€Aâ€A small molecule for solution processed bulk heterojunction organic solar cells. International Journal of Energy Research, 2020, 44, 12100-12111.	4.5	5
17	Highly stable bulk heterojunction organic solar cells based on asymmetric benzoselenadiazoleâ€oriented organic chromophores. International Journal of Energy Research, 2022, 46, 7825-7839.	4.5	5
18	Justifying benzoselenadiazole acceptor core as organic semiconductor for stable bulk-heterojunction organic solar cells at ambient temperature. Journal of Materiomics, 2021, 7, 1112-1121.	5.7	4

#	Article	IF	CITATIONS
19	Controlled Growth of WO3 Pyramidal Thin Film via Hot-Filament Chemical Vapor Deposition: Electrochemical Detection of Ethylenediamine. Chemosensors, 2021, 9, 257.	3.6	3
20	Vertically arranged Mn2O3 nanosheets as smart sensing electrode for highly sensitive N-hydroxysuccinimide. Microchemical Journal, 2021, 163, 105912.	4.5	2
21	An Effective D-Ï€-A Type Donor Material Based on 4-Fluorobenzoylacetonitrile Core Unit for Bulk Heterojunction Organic Solar Cells. Applied Sciences (Switzerland), 2021, 11, 646.	2.5	2
22	Electrochemical Detection of Chloride Ions by Copper (II) Complex with Mixed Ligand of Oxindole Derivative and Dithiocarbamates Moiety. Applied Sciences (Switzerland), 2019, 9, 1358.	2.5	1
23	Introductory Chapter: Prospects of Nanostructured Materials. , 2020, , .		O