Katharina von Kriegstein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1432064/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Altered processing of communication signals in the subcortical auditory sensory pathway in autism. Human Brain Mapping, 2022, 43, 1955-1972.	3.6	13
2	Twelve- and Fourteen-Year-Old School Children Differentially Benefit from Sensorimotor- and Multisensory-Enriched Vocabulary Training. Educational Psychology Review, 2022, 34, 1739-1770.	8.4	5
3	Visual Sensory Cortices Causally Contribute to Auditory Word Recognition Following Sensorimotor-Enriched Vocabulary Training. Cerebral Cortex, 2021, 31, 513-528.	2.9	16
4	Adjudicating Between Local and Global Architectures of Predictive Processing in the Subcortical Auditory Pathway. Frontiers in Neural Circuits, 2021, 15, 644743.	2.8	10
5	Neural modelling of the encoding of fast frequency modulation. PLoS Computational Biology, 2021, 17, e1008787.	3.2	3
6	Visual mechanisms for voiceâ€identity recognition flexibly adjust to auditory noise level. Human Brain Mapping, 2021, 42, 3963-3982.	3.6	5
7	Modulation of the Primary Auditory Thalamus When Recognizing Speech with Background Noise. Journal of Neuroscience, 2021, 41, 7136-7147.	3.6	6
8	Motor Cortex Causally Contributes to Vocabulary Translation following Sensorimotor-Enriched Training. Journal of Neuroscience, 2021, 41, 8618-8631.	3.6	10
9	Mapping the human lateral geniculate nucleus and its cytoarchitectonic subdivisions using quantitative MRI. Neurolmage, 2021, 244, 118559.	4.2	10
10	Brief Report: Speech-in-Noise Recognition and the Relation to Vocal Pitch Perception in Adults with Autism Spectrum Disorder and Typical Development. Journal of Autism and Developmental Disorders, 2020, 50, 356-363.	2.7	28
11	Dorsalâ€movement and ventralâ€form regions are functionally connected during visualâ€speech recognition. Human Brain Mapping, 2020, 41, 952-972.	3.6	6
12	Brain mechanisms of eye contact during verbal communication predict autistic traits in neurotypical individuals. Scientific Reports, 2020, 10, 14602.	3.3	3
13	Learning Foreign Language Vocabulary with Gestures and Pictures Enhances Vocabulary Memory for Several Months Post-Learning in Eight-Year-Old School Children. Educational Psychology Review, 2020, 32, 815-850.	8.4	39
14	Representation of Perceptual Evidence in the Human Brain Assessed by Fast, Within-Trial Dynamic Stimuli. Frontiers in Human Neuroscience, 2020, 14, 9.	2.0	7
15	Intranasal oxytocin modulates brain responses to voice-identity recognition in typically developing individuals, but not in ASD. Translational Psychiatry, 2020, 10, 221.	4.8	5
16	Timbre semantics through the lens of crossmodal correspondences: A new way of asking old questions. Acoustical Science and Technology, 2020, 41, 365-368.	0.5	7
17	Abstract rules drive adaptation in the subcortical sensory pathway. ELife, 2020, 9, .	6.0	14
18	The Relation Between Vocal Pitch and Vocal Emotion Recognition Abilities in People with Autism Spectrum Disorder and Typical Development. Journal of Autism and Developmental Disorders, 2019, 49,	2.7	35

#	Article	IF	CITATIONS
19	Voice Processing and Voice-Identity Recognition. Springer Handbook of Auditory Research, 2019, , 175-209.	0.7	3
20	Reduced structural connectivity between left auditory thalamus and the motion-sensitive planum temporale in developmental dyslexia. Journal of Neuroscience, 2019, 39, 1435-18.	3.6	39
21	Modulation of tonotopic ventral medial geniculate body is behaviorally relevant for speech recognition. ELife, 2019, 8, .	6.0	25
22	Understanding the mechanisms of familiar voice-identity recognition in the human brain. Neuropsychologia, 2018, 116, 179-193.	1.6	64
23	Hypermyelination of the left auditory cortex in developmental dyslexia. Neurology, 2018, 90, e492-e497.	1.1	16
24	Obligatory and facultative brain regions for voice-identity recognition. Brain, 2018, 141, 234-247.	7.6	30
25	Recognizing visual speech: Reduced responses in visual-movement regions, but not other speech regions in autism. NeuroImage: Clinical, 2018, 20, 1078-1091.	2.7	14
26	Task-dependent modulation of the visual sensory thalamus assists visual-speech recognition. NeuroImage, 2018, 178, 721-734.	4.2	7
27	Neural mechanisms of eye contact when listening to another person talking. Social Cognitive and Affective Neuroscience, 2017, 12, nsw127.	3.0	27
28	Developmental phonagnosia: Linking neural mechanisms with the behavioural phenotype. NeuroImage, 2017, 155, 97-112.	4.2	17
29	Recently learned foreign abstract and concrete nouns are represented in distinct cortical networks similar to the native language. Human Brain Mapping, 2017, 38, 4398-4412.	3.6	19
30	Cross-modal processing of voices and faces in developmental prosopagnosia and developmental phonagnosia. Visual Cognition, 2017, 25, 644-657.	1.6	9
31	Altered Structural Connectivity of the Left Visual Thalamus in Developmental Dyslexia. Current Biology, 2017, 27, 3692-3698.e4.	3.9	51
32	Voice identity processing in autism spectrum disorder. Autism Research, 2017, 10, 155-168.	3.8	37
33	Implicit Talker Training Improves Comprehension of Auditory Speech in Noise. Frontiers in Psychology, 2017, 8, 1584.	2.1	28
34	Temporal voice areas exist in autism spectrum disorder but are dysfunctional for voice identity recognition. Social Cognitive and Affective Neuroscience, 2016, 11, 1812-1822.	3.0	49
35	Spatiotemporal dynamics of random stimuli account for trial-to-trial variability in perceptual decision making. Scientific Reports, 2016, 6, 18832.	3.3	14
36	Voice Identity Recognition: Functional Division of the Right STS and Its Behavioral Relevance. Journal of Cognitive Neuroscience, 2015, 27, 280-291.	2.3	39

#	Article	IF	CITATIONS
37	Visual and Motor Cortices Differentially Support the Translation of Foreign Language Words. Current Biology, 2015, 25, 530-535.	3.9	71
38	Visual face-movement sensitive cortex is relevant for auditory-only speech recognition. Cortex, 2015, 68, 86-99.	2.4	28
39	How the human brain exchanges information across sensory modalities to recognize other people. Human Brain Mapping, 2015, 36, 324-339.	3.6	31
40	Functional Connectivity between Face-Movement and Speech-Intelligibility Areas during Auditory-Only Speech Perception. PLoS ONE, 2014, 9, e86325.	2.5	16
41	How do we recognise who is speaking. Frontiers in Bioscience - Scholar, 2014, S6, 92-109.	2.1	42
42	Person recognition and the brain: Merging evidence from patients and healthy individuals. Neuroscience and Biobehavioral Reviews, 2014, 47, 717-734.	6.1	84
43	Percepts, not acoustic properties, are the units of auditory short-term memory Journal of Experimental Psychology: Human Perception and Performance, 2014, 40, 445-450.	0.9	7
44	Visual abilities are important for auditory-only speech recognition: Evidence from autism spectrum disorder. Neuropsychologia, 2014, 65, 1-11.	1.6	29
45	Hemispheric lateralization of linguistic prosody recognition in comparison to speech and speaker recognition. Neurolmage, 2014, 102, 332-344.	4.2	48
46	Two Cases of Selective Developmental Voice-Recognition Impairments. Current Biology, 2014, 24, 2348-2353.	3.9	40
47	A neural mechanism for recognizing speech spoken by different speakers. NeuroImage, 2014, 91, 375-385.	4.2	36
48	Learning speech recognition from songbirds. BMC Neuroscience, 2013, 14, .	1.9	0
49	A Dynamic System for the Analysis of Acoustic Features and Valence of Aversive Sounds in the Human Brain. Advances in Experimental Medicine and Biology, 2013, 787, 463-472.	1.6	1
50	Early auditory sensory processing of voices is facilitated by visual mechanisms. NeuroImage, 2013, 77, 237-245.	4.2	41
51	Mechanisms of enhancing visual–speech recognition by prior auditory information. NeuroImage, 2013, 65, 109-118.	4.2	41
52	From Birdsong to Human Speech Recognition: Bayesian Inference on a Hierarchy of Nonlinear Dynamical Systems. PLoS Computational Biology, 2013, 9, e1003219.	3.2	43
53	Features versus Feelings: Dissociable Representations of the Acoustic Features and Valence of Aversive Sounds. Journal of Neuroscience, 2012, 32, 14184-14192.	3.6	121
54	Early auditory sensory processing is facilitated by visualÂmechanisms. Seeing and Perceiving, 2012, 25, 184-185.	0.3	0

KATHARINA VON KRIEGSTEIN

#	Article	IF	CITATIONS
55	Dysfunction of the auditory thalamus in developmental dyslexia. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 13841-13846.	7.1	90
56	Navigating the Auditory Scene: An Expert Role for the Hippocampus. Journal of Neuroscience, 2012, 32, 12251-12257.	3.6	42
57	Contact dermatitis after transcranial direct current stimulation. Brain Stimulation, 2012, 5, 432-434.	1.6	12
58	Disorders of Musical Cognition. , 2012, , .		4
59	Distinct critical cerebellar subregions for components of verbal working memory. Neuropsychologia, 2012, 50, 189-197.	1.6	55
60	Direct Structural Connections between Voice- and Face-Recognition Areas. Journal of Neuroscience, 2011, 31, 12906-12915.	3.6	145
61	Brain Bases for Auditory Stimulus-Driven Figure–Ground Segregation. Journal of Neuroscience, 2011, 31, 164-171.	3.6	118
62	A Multisensory Perspective on Human Auditory Communication. Frontiers in Neuroscience, 2011, , 683-700.	0.0	3
63	A Multisensory Perspective on Human Auditory Communication. Frontiers in Neuroscience, 2011, , 683-700.	0.0	1
64	Cortical Mechanisms for the Segregation and Representation of Acoustic Textures. Journal of Neuroscience, 2010, 30, 2070-2076.	3.6	31
65	How the Human Brain Recognizes Speech in the Context of Changing Speakers. Journal of Neuroscience, 2010, 30, 629-638.	3.6	86
66	Recognizing Sequences of Sequences. PLoS Computational Biology, 2009, 5, e1000464.	3.2	105
67	How the brain repairs stuttering. Brain, 2009, 132, 2747-2760.	7.6	220
68	Task-Dependent Modulation of Medial Geniculate Body Is Behaviorally Relevant for Speech Recognition. Current Biology, 2008, 18, 1855-1859.	3.9	57
69	Encoding of Spectral Correlation over Time in Auditory Cortex. Journal of Neuroscience, 2008, 28, 13268-13273.	3.6	67
70	Simulation of talking faces in the human brain improves auditory speech recognition. Proceedings of the United States of America, 2008, 105, 6747-6752.	7.1	131
71	Responses to Interaural Time Delay in Human Cortex. Journal of Neurophysiology, 2008, 100, 2712-2718.	1.8	30
72	An Information Theoretic Characterisation of Auditory Encoding. PLoS Biology, 2007, 5, e288.	5.6	67

#	Article	IF	CITATIONS
73	Inhaled Insulin for Diabetes Mellitus. New England Journal of Medicine, 2007, 356, 2106-2108.	27.0	8
74	Neural Representation of Auditory Size in the Human Voice and in Sounds from Other Resonant Sources. Current Biology, 2007, 17, 1123-1128.	3.9	61
75	A π-Limit for Coding ITDs: Neural Responses and the Binaural Display. , 2007, , 399-406.		1
76	Processing the acoustic effect of size in speech sounds. NeuroImage, 2006, 32, 368-375.	4.2	38
77	Implicit Multisensory Associations Influence Voice Recognition. PLoS Biology, 2006, 4, e326.	5.6	248
78	Representation of interaural time delay in the human auditory midbrain. Nature Neuroscience, 2006, 9, 1096-1098.	14.8	66
79	Voice Recognition and Cross-Modal Responses to Familiar Speakers' Voices in Prosopagnosia. Cerebral Cortex, 2006, 16, 1314-1322.	2.9	73
80	Music and the brain: disorders of musical listening. Brain, 2006, 129, 2533-2553.	7.6	264
81	Functional imaging of human crossmodal identification and object recognition. Experimental Brain Research, 2005, 166, 559-571.	1.5	330
82	Interaction of Face and Voice Areas during Speaker Recognition. Journal of Cognitive Neuroscience, 2005, 17, 367-376.	2.3	282
83	The Sensory Cortical Representation of the Human Penis: Revisiting Somatotopy in the Male Homunculus. Journal of Neuroscience, 2005, 25, 5984-5987.	3.6	116
84	The expression pattern and assembly profile of synaptic membrane proteins in ribbon synapses of the developing mouse retina. Cell and Tissue Research, 2003, 311, 159-173.	2.9	40
85	Modulation of neural responses to speech by directing attention to voices or verbal content. Cognitive Brain Research, 2003, 17, 48-55.	3.0	265
86	Distribution of synaptic vesicle proteins in the mammalian retina identifies obligatory and facultative components of ribbon synapses. European Journal of Neuroscience, 1999, 11, 1335-1348.	2.6	104
87	How Can We Learn Foreign Language Vocabulary More Easily?. Frontiers for Young Minds, 0, 8, .	0.8	1