Peter M Elias

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1431968/publications.pdf Version: 2024-02-01

	6840	13635
19,729	81	134
citations	h-index	g-index
214	214	12442
docs citations	times ranked	citing authors
	19,729 citations 214 docs citations	19,72981citationsh-index214214docs citationstimes ranked

DETED M FLINS

#	Article	IF	CITATIONS
1	Role of nitric oxide in regulating epidermal permeability barrier function. Experimental Dermatology, 2022, 31, 290-298.	1.4	19
2	Regulatory Role of Nitric Oxide in Cutaneous Inflammation. Inflammation, 2022, 45, 949-964.	1.7	25
3	Optimizing emollient therapy for skin barrier repair in atopic dermatitis. Annals of Allergy, Asthma and Immunology, 2022, 128, 505-511.	0.5	14
4	Atopic Dermatitis: The Fate of the Fat. International Journal of Molecular Sciences, 2022, 23, 2121.	1.8	12
5	Mitochondrial Activity Is Upregulated in Nonlesional Atopic Dermatitis and Amenable to Therapeutic Intervention. Journal of Investigative Dermatology, 2022, 142, 2623-2634.e12.	0.3	11
6	Optimised emollient mixture for skin barrier repair: Applications to global child health. Journal of Global Health, 2022, 12, 03019.	1.2	3
7	Consensus recommendations for the use of retinoids in ichthyosis and other disorders of cornification in children and adolescents. Pediatric Dermatology, 2021, 38, 164-180.	0.5	34
8	Mutations in 3βâ€hydroxysteroidâ€Î∕8, Î⁄7â€isomerase paradoxically benefit epidermal permeability barrier homeostasis in mice. Experimental Dermatology, 2021, 30, 384-389.	1.4	1
9	Unbound Corneocyte Lipid Envelopes in 12R-Lipoxygenase Deficiency Support a Specific Role in Lipid-Protein Cross-Linking. American Journal of Pathology, 2021, 191, 921-929.	1.9	6
10	Phenotypic overlap between atopic dermatitis and autism. BMC Neuroscience, 2021, 22, 43.	0.8	10
11	Atopic dermatitis: Role of the skin barrier, environment, microbiome, and therapeutic agents. Journal of Dermatological Science, 2021, 102, 142-157.	1.0	80
12	Barrier Function in Aging: Comments on Pilkington etÂal. "Inflammaging and the Skin― Journal of Investigative Dermatology, 2021, , .	0.3	2
13	Commensal microbiota regulates skin barrier function and repair via signaling through the aryl hydrocarbon receptor. Cell Host and Microbe, 2021, 29, 1235-1248.e8.	5.1	119
14	Effect of sunflower seed oil emollient therapy on newborn infant survival in Uttar Pradesh, India: A community-based, cluster randomized, open-label controlled trial. PLoS Medicine, 2021, 18, e1003680.	3.9	16
15	Ichthyosis and hereditary cornification disorders in dogs. Veterinary Dermatology, 2021, 32, 567.	0.4	6
16	Conditional Alox12b Knockout: Degradation of the Corneocyte Lipid Envelope in a Mouse Model of Autosomal Recessive Congenital Ichthyoses. Journal of Investigative Dermatology, 2020, 140, 249-253.e6.	0.3	6
17	Stress test of the skin: The cutaneous permeability barrier treadmill. Experimental Dermatology, 2020, 29, 112-113.	1.4	8
18	Could cellular and signaling abnormalities converge to provoke atopic dermatitis?. JDDG - Journal of the German Society of Dermatology, 2020, 18, 1215-1223.	0.4	9

#	Article	IF	CITATIONS
19	Laudatio in Honor of Professor Peter Fritsch's 80thÂBirthday. JDDG - Journal of the German Society of Dermatology, 2020, 18, 1347-1347.	0.4	0
20	Protease-Activated Receptor-2 Regulates Neuro-Epidermal Communication in Atopic Dermatitis. Frontiers in Immunology, 2020, 11, 1740.	2.2	46
21	Inducible nitric oxide synthase is required for epidermal permeability barrier homeostasis in mice. Experimental Dermatology, 2020, 29, 1027-1032.	1.4	7
22	Topical Applications of Thiosulfinate-Enriched Allium sativum Extract Accelerates Acute Cutaneous Wound Healing in Murine Model. Chinese Journal of Integrative Medicine, 2020, 26, 812-818.	0.7	3
23	Exosomes from Human Adipose Tissue-Derived Mesenchymal Stem Cells Promote Epidermal Barrier Repair by Inducing de Novo Synthesis of Ceramides in Atopic Dermatitis. Cells, 2020, 9, 680.	1.8	95
24	Aging-associated alterations in epidermal function and their clinical significance. Aging, 2020, 12, 5551-5565.	1.4	72
25	Fatty acid transport protein 4 is required for incorporation of saturated ultralong-chain fatty acids into epidermal ceramides and monoacylglycerols. Scientific Reports, 2019, 9, 13254.	1.6	17
26	Transient epidermal barrier deficiency and lowered allergic threshold in filaggrinâ€hornerin (<i>FlgHrnr</i> ^{â^'/â ~}) doubleâ€deficient mice. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 1327-1339.	2.7	21
27	Benefits of Hesperidin for Cutaneous Functions. Evidence-based Complementary and Alternative Medicine, 2019, 2019, 1-19.	0.5	83
28	Mutations in Recessive Congenital Ichthyoses Illuminate the Origin and Functions of the CorneocyteÂLipid Envelope. Journal of Investigative Dermatology, 2019, 139, 760-768.	0.3	41
29	The nonlesional skin surface distinguishes atopic dermatitis with food allergy as a unique endotype. Science Translational Medicine, 2019, 11, .	5.8	159
30	<p>Could Inflammaging and Its Sequelae Be Prevented or Mitigated?</p> . Clinical Interventions in Aging, 2019, Volume 14, 2301-2304.	1.3	15
31	By protecting against cutaneous inflammation, epidermal pigmentation provided an additional advantage for ancestral humans. Evolutionary Applications, 2019, 12, 1960-1970.	1.5	11
32	Tissue microenvironment initiates an immune response to structural components of <i>Staphylococcus aureus</i> . Experimental Dermatology, 2019, 28, 161-168.	1.4	1
33	Moisturizers versus Current and Next-Generation Barrier Repair Therapy for the Management of Atopic Dermatitis. Skin Pharmacology and Physiology, 2019, 32, 1-7.	1.1	55
34	Topical 11β-Hydroxysteroid Dehydrogenase Type 1 Inhibition Corrects Cutaneous Features of Systemic Glucocorticoid Excess in Female Mice. Endocrinology, 2018, 159, 547-556.	1.4	21
35	Cellular and Metabolic Basis for the Ichthyotic Phenotype in NIPAL4 (Ichthyin)–Deficient Canines. American Journal of Pathology, 2018, 188, 1419-1429. 	1.9	19
36	Skin care products can aggravate epidermal function: studies in a murine model suggest a pathogenic role in sensitive skin. Contact Dermatitis, 2018, 78, 151-158.	0.8	23

Peter M Elias

#	Article	IF	CITATIONS
37	Comment on: The Vitamin D–Folate Hypothesis as an Evolutionary Model for Skin Pigmentation: An Update and Integration of Current Ideas, Nutrients 2018, 10, 554. Nutrients, 2018, 10, 1753.	1.7	1
38	Primary role of barrier dysfunction in the pathogenesis of atopic dermatitis. Experimental Dermatology, 2018, 27, 847-851.	1.4	49
39	Does moisturizing the skin equate with barrier repair therapy?. Annals of Allergy, Asthma and Immunology, 2018, 121, 653-656.e2.	0.5	17
40	A data mining paradigm for identifying key factors in biological processes using gene expression data. Scientific Reports, 2018, 8, 9083.	1.6	14
41	Epidermal Dysfunction Leads to an Age-Associated Increase in Levels of SerumÂInflammatory Cytokines. Journal of Investigative Dermatology, 2017, 137, 1277-1285.	0.3	84
42	The how, why and clinical importance of stratum corneum acidification. Experimental Dermatology, 2017, 26, 999-1003.	1.4	55
43	Skin Barrier Development Depends on CGI-58 Protein Expression during Late-Stage Keratinocyte Differentiation. Journal of Investigative Dermatology, 2017, 137, 403-413.	0.3	33
44	Embryonic AP1 Transcription Factor Deficiency Causes a Collodion Baby-Like Phenotype. Journal of Investigative Dermatology, 2017, 137, 1868-1877.	0.3	3
45	It Remains Unknown Whether Filaggrin Gene Mutations Evolved to Increase Cutaneous Synthesis of Vitamin D. Genome Biology and Evolution, 2017, 9, 900-901.	1.1	8
46	PNPLA1 Deficiency in Mice and HumansÂLeads to a Defect in the SynthesisÂof Omega-O-Acylceramides. Journal of Investigative Dermatology, 2017, 137, 394-402.	0.3	78
47	Alterations in Epidermal Eicosanoid Metabolism Contribute to Inflammation and Impaired Late Differentiation in FLG-Mutated Atopic Dermatitis. Journal of Investigative Dermatology, 2017, 137, 706-715.	0.3	43
48	Defects in Stratum Corneum Desquamation Are the Predominant Effect of Impaired ABCA12 Function in a Novel Mouse Model of Harlequin Ichthyosis. PLoS ONE, 2016, 11, e0161465.	1.1	25
49	Basis for the gain and subsequent dilution of epidermal pigmentation during human evolution: The barrier and metabolic conservation hypotheses revisited. American Journal of Physical Anthropology, 2016, 161, 189-207.	2.1	21
50	<scp>T</scp> he vitamin D hypothesis: <scp>D</scp> ead or alive?. American Journal of Physical Anthropology, 2016, 161, 756-757.	2.1	1
51	ER stress stimulates production of the key antimicrobial peptide, cathelicidin, by forming a previously unidentified intracellular S1P signaling complex. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1334-42.	3.3	77
52	Combined Benefits of a PAR2 Inhibitor and Stratum Corneum Acidification for Murine Atopic Dermatitis. Journal of Investigative Dermatology, 2016, 136, 538-541.	0.3	7
53	Cellular Basis of Secondary Infections and Impaired Desquamation in Certain Inherited Ichthyoses. JAMA Dermatology, 2015, 151, 285.	2.0	24
54	Topical Hesperidin Enhances Epidermal Function in an Aged Murine Model. Journal of Investigative Dermatology, 2015, 135, 1184-1187.	0.3	20

#	Δρτιςι ε	IF	CITATIONS
55	Severe dermatitis, multiple allergies, and metabolic wasting syndrome caused by a novel mutation in the N-terminal plakin domain of desmoplakin. Journal of Allergy and Clinical Immunology, 2015, 136, 1268-1276.	1.5	103
56	Evolution of Skin Color. , 2015, , 273-283.		1
57	Sphingosine kinase 1 activation enhances epidermal innate immunity through sphingosine-1-phosphate stimulation of cathelicidin production. Journal of Dermatological Science, 2015, 79, 229-234.	1.0	20
58	Sebaceous Gland, Hair Shaft, and Epidermal Barrier Abnormalities in Keratosis Pilaris with and without Filaggrin Deficiency. American Journal of Pathology, 2015, 185, 1012-1021.	1.9	23
59	Potential role of reduced environmental UV exposure as a driver of the current epidemic of atopic dermatitis. Journal of Allergy and Clinical Immunology, 2015, 136, 1163-1169.	1.5	56
60	Stratum corneum acidification: how and why?. Experimental Dermatology, 2015, 24, 179-180.	1.4	38
61	Frequent somatic reversion of KRT1 mutations in ichthyosis with confetti. Journal of Clinical Investigation, 2015, 125, 1703-1707.	3.9	57
62	Paradoxical Benefits of Psychological Stress in Inflammatory Dermatoses Models Are Glucocorticoid Mediated. Journal of Investigative Dermatology, 2014, 134, 2890-2897.	0.3	25
63	An Endoplasmic Reticulum Stress-Initiated Sphingolipid Metabolite, Ceramide-1-Phosphate, Regulates Epithelial Innate Immunity by Stimulating β-Defensin Production. Molecular and Cellular Biology, 2014, 34, 4368-4378.	1.1	25
64	Topical hesperidin prevents glucocorticoidâ€induced abnormalities in epidermal barrier function in murine skin. Experimental Dermatology, 2014, 23, 645-651.	1.4	23
65	The important role of lipids in the epidermis and their role in the formation and maintenance of the cutaneous barrier. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2014, 1841, 279.	1.2	26
66	Lipid abnormalities and lipid-based repair strategies in atopic dermatitis. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2014, 1841, 323-330.	1.2	63
67	Role of lipids in the formation and maintenance of the cutaneous permeability barrier. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2014, 1841, 280-294.	1.2	288
68	Mechanisms of abnormal lamellar body secretion and the dysfunctional skin barrier in patients with atopic dermatitis. Journal of Allergy and Clinical Immunology, 2014, 134, 781-791.e1.	1.5	171
69	Ultrastructure of skin from Refsum disease with emphasis on epidermal lamellar bodies and stratum corneum barrier lipid organization. Archives of Dermatological Research, 2014, 306, 731-737.	1.1	9
70	Evidence That Loss-of-Function Filaggrin Gene Mutations Evolved in Northern Europeans to Favor Intracutaneous Vitamin D3 Production. Evolutionary Biology, 2014, 41, 388-396.	0.5	45
71	The dietary ingredient, genistein, stimulates cathelicidin antimicrobial peptide expression through a novel S1P-dependent mechanism. Journal of Nutritional Biochemistry, 2014, 25, 734-740.	1.9	27
72	Role of cholesterol sulfate in epidermal structure and function: Lessons from X-linked ichthyosis. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2014, 1841, 353-361.	1.2	86

#	Article	IF	CITATIONS
73	Formation and functions of the corneocyte lipid envelope (CLE). Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2014, 1841, 314-318.	1.2	121
74	Basis for Enhanced Barrier Function of Pigmented Skin. Journal of Investigative Dermatology, 2014, 134, 2399-2407.	0.3	51
75	Treating atopic dermatitis at the source: corrective barrier repair therapy based upon new pathogenic insights. Expert Review of Dermatology, 2013, 8, 27-36.	0.3	16
76	Altered sphingoid base profiles predict compromised membrane structure and permeability in atopic dermatitis. Journal of Dermatological Science, 2013, 72, 296-303.	1.0	41
77	The <scp>T</scp> h2 cytokine, interleukinâ€4, abrogates the cohesion of normal stratum corneum in mice: implications for pathogenesis of atopic dermatitis. Experimental Dermatology, 2013, 22, 30-35.	1.4	51
78	Re-appraisal of current theories for the development and loss of epidermal pigmentation in hominins and modern humans. Journal of Human Evolution, 2013, 64, 687-692.	1.3	30
79	Topical Antihistamines Display Potent Anti-Inflammatory Activity Linked in Part to Enhanced Permeability Barrier Function. Journal of Investigative Dermatology, 2013, 133, 469-478.	0.3	51
80	Resveratrol Stimulates Sphingosine-1-Phosphate Signaling of Cathelicidin Production. Journal of Investigative Dermatology, 2013, 133, 1942-1949.	0.3	45
81	Topical apigenin improves epidermal permeability barrier homoeostasis in normal murine skin by divergent mechanisms. Experimental Dermatology, 2013, 22, 210-215.	1.4	46
82	Update on the Structure and Function of the Skin Barrier: Atopic Dermatitis as an Exemplar of Clinical Implications. Seminars in Cutaneous Medicine and Surgery, 2013, 32, S21-S24.	1.6	27
83	Cellular Changes that Accompany Shedding of Human Corneocytes. Journal of Investigative Dermatology, 2012, 132, 2430-2439.	0.3	48
84	Topical Apigenin Alleviates Cutaneous Inflammation in Murine Models. Evidence-based Complementary and Alternative Medicine, 2012, 2012, 1-7.	0.5	32
85	Cannabinoid receptors 1 and 2 oppositely regulate epidermal permeability barrier status and differentiation. Experimental Dermatology, 2012, 21, 688-693.	1.4	38
86	Tight junction properties change during epidermis development. Experimental Dermatology, 2012, 21, 798-801.	1.4	23
87	Abnormal barrier function in the pathogenesis of ichthyosis: Therapeutic implications for lipid metabolic disorders. Clinics in Dermatology, 2012, 30, 311-322.	0.8	50
88	Ablation of the Calcium-Sensing Receptor in Keratinocytes Impairs Epidermal Differentiation and Barrier Function. Journal of Investigative Dermatology, 2012, 132, 2350-2359.	0.3	73
89	Structure and Function of the Stratum Corneum Extracellular Matrix. Journal of Investigative Dermatology, 2012, 132, 2131-2133.	0.3	108
90	Topical hesperidin improves epidermal permeability barrier function and epidermal differentiation in normal murine skin. Experimental Dermatology, 2012, 21, 337-340.	1.4	47

#	Article	IF	CITATIONS
91	Filaggrin Genotype in Ichthyosis Vulgaris Predicts Abnormalities in Epidermal Structure and Function. American Journal of Pathology, 2011, 178, 2252-2263.	1.9	213
92	Skin ultrastructural findings in type 2 Gaucher disease: Diagnostic implications. Molecular Genetics and Metabolism, 2011, 104, 631-636.	0.5	32
93	A topical Chinese herbal mixture improves epidermal permeability barrier function in normal murine skin. Experimental Dermatology, 2011, 20, 285-288.	1.4	16
94	Pathogenesis of the cutaneous phenotype in inherited disorders of cholesterol metabolism. Dermato-Endocrinology, 2011, 3, 100-106.	1.9	24
95	Expression of Epidermal CAMP Changes in Parallel with Permeability Barrier Status. Journal of Investigative Dermatology, 2011, 131, 2263-2270.	0.3	28
96	Regulation of Cathelicidin Antimicrobial Peptide Expression by an Endoplasmic Reticulum (ER) Stress Signaling, Vitamin D Receptor-independent Pathway. Journal of Biological Chemistry, 2011, 286, 34121-34130.	1.6	120
97	Lipoxygenases Mediate the Effect of Essential Fatty Acid in Skin Barrier Formation. Journal of Biological Chemistry, 2011, 286, 24046-24056.	1.6	132
98	Efficacy of Combined Peroxisome Proliferator-Activated Receptor-α Ligand and Glucocorticoid Therapy in a Murine Model of Atopic Dermatitis. Journal of Investigative Dermatology, 2011, 131, 1845-1852.	0.3	37
99	Pathogenesis-Based Therapy Reverses Cutaneous Abnormalities in an Inherited Disorder of Distal Cholesterol Metabolism. Journal of Investigative Dermatology, 2011, 131, 2242-2248.	0.3	95
100	Topical calcineurin inhibitors compromise stratum corneum integrity, epidermal permeability and antimicrobial barrier function. Experimental Dermatology, 2010, 19, 501-510.	1.4	55
101	Ichthyosis in Sjögren–Larsson syndrome reflects defective barrier function due to abnormal lamellar body structure and secretion. Archives of Dermatological Research, 2010, 302, 443-451.	1.1	39
102	Barrier requirements as the evolutionary "driver―of epidermal pigmentation in humans. American Journal of Human Biology, 2010, 22, 526-537.	0.8	46
103	Acute Acidification of Stratum Corneum Membrane Domains Using Polyhydroxyl Acids Improves Lipid Processing and Inhibits Degradation of Corneodesmosomes. Journal of Investigative Dermatology, 2010, 130, 500-510.	0.3	115
104	Therapeutic Implications of a Barrier-based Pathogenesis of Atopic Dermatitis. Annals of Dermatology, 2010, 22, 245.	0.3	54
105	Mitotic Recombination in Patients with Ichthyosis Causes Reversion of Dominant Mutations in <i>KRT10</i> . Science, 2010, 330, 94-97.	6.0	176
106	Neutral Lipid Storage Leads to Acylceramide Deficiency, Likely Contributing to the Pathogenesis of Dorfman–Chanarin Syndrome. Journal of Investigative Dermatology, 2010, 130, 2497-2499.	0.3	53
107	Murine atopic dermatitis responds to peroxisome proliferator-activated receptors $\hat{1}_{\pm}$ and $\hat{1}_{2}/\hat{1}_{-}$ (but not $\hat{1}_{3}$) and liver X receptor activators. Journal of Allergy and Clinical Immunology, 2010, 125, 160-169.e5.	1.5	74
108	Revised nomenclature and classification of inherited ichthyoses: Results of the First Ichthyosis Consensus Conference in Sorèze 2009. Journal of the American Academy of Dermatology, 2010, 63, 607-641.	0.6	610

#	Article	IF	CITATIONS
109	Neuroendocrine Nicotinic Receptor Activation Increases Susceptibility to Bacterial Infections by Suppressing Antimicrobial Peptide Production. Cell Host and Microbe, 2010, 7, 277-289.	5.1	69
110	Abnormal skin barrier in the etiopathogenesis of atopic dermatitis. Current Allergy and Asthma Reports, 2009, 9, 265-272.	2.4	76
111	pH-Regulated Mechanisms Account for Pigment-Type Differences in Epidermal Barrier Function. Journal of Investigative Dermatology, 2009, 129, 1719-1729.	0.3	125
112	Maintenance of an Acidic Stratum Corneum Prevents Emergence of Murine Atopic Dermatitis. Journal of Investigative Dermatology, 2009, 129, 1824-1835.	0.3	105
113	Activators of PPARs and LXR decrease the adverse effects of exogenous glucocorticoids on the epidermis. Experimental Dermatology, 2009, 18, 643-649.	1.4	56
114	Filaggrin deficiency confers a paracellular barrier abnormality that reduces inflammatory thresholds to irritants and haptens. Journal of Allergy and Clinical Immunology, 2009, 124, 496-506.e6.	1.5	248
115	Evidence that stress to the epidermal barrier influenced the development of pigmentation in humans. Pigment Cell and Melanoma Research, 2009, 22, 420-434.	1.5	39
116	Abnormal skin barrier in the etiopathogenesis of atopic dermatitis. Current Opinion in Allergy and Clinical Immunology, 2009, 9, 437-446.	1.1	204
117	An Appropriate Response to the Black-Box Warning: Corrective, Barrier Repair Therapy in Atopic Dermatitis. Clinical Medicine Dermatology, 2009, 2, 1-3.	3.0	5
118	Skin barrier function. Current Allergy and Asthma Reports, 2008, 8, 299-305.	2.4	147
119	Biopositive Effects of Low-Dose UVB on Epidermis: Coordinate Upregulation of Antimicrobial Peptides and Permeability Barrier Reinforcement. Journal of Investigative Dermatology, 2008, 128, 2880-2887.	0.3	137
120	"Outside-to-Inside―(and Now Back to "Outsideâ€) Pathogenic Mechanisms in Atopic Dermatitis. Journal of Investigative Dermatology, 2008, 128, 1067-1070.	0.3	263
121	Characterization of a Hapten-Induced, Murine Model with Multiple Features of Atopic Dermatitis: Structural, Immunologic, and Biochemical Changes following Single Versus Multiple Oxazolone Challenges. Journal of Investigative Dermatology, 2008, 128, 79-86.	0.3	219
122	Co-Regulation and Interdependence of the Mammalian Epidermal Permeability and Antimicrobial Barriers. Journal of Investigative Dermatology, 2008, 128, 917-925.	0.3	199
123	Basis for the barrier abnormality in atopic dermatitis: Outside-inside-outside pathogenic mechanisms. Journal of Allergy and Clinical Immunology, 2008, 121, 1337-1343.	1.5	403
124	Barrier repair trumps immunology in the pathogenesis and therapy of atopic dermatitis. Drug Discovery Today Disease Mechanisms, 2008, 5, e33-e38.	0.8	16
125	Acute Modulations in Permeability Barrier Function Regulate Epidermal Cornification. American Journal of Pathology, 2008, 172, 86-97.	1.9	124
126	Epidermal Vascular Endothelial Growth Factor Production Is Required for Permeability Barrier Homeostasis, Dermal Angiogenesis, and the Development of Epidermal Hyperplasia. American Journal of Pathology, 2008, 173, 689-699.	1.9	90

#	Article	IF	CITATIONS
127	Thematic Review Series: Skin Lipids. Peroxisome proliferator-activated receptors and liver X receptors in epidermal biology. Journal of Lipid Research, 2008, 49, 499-509.	2.0	170
128	Thematic review series: Skin Lipids. Pathogenesis of permeability barrier abnormalities in the ichthyoses: inherited disorders of lipid metabolism. Journal of Lipid Research, 2008, 49, 697-714.	2.0	171
129	Barrier-repair therapy for atopic dermatitis: corrective lipid biochemical therapy. Expert Review of Dermatology, 2008, 3, 441-452.	0.3	18
130	Loss of functional ELOVL4 depletes very long-chain fatty acids (≥C28) and the unique ω-O-acylceramides in skin leading to neonatal death. Human Molecular Genetics, 2007, 16, 471-482.	1.4	234
131	Ichthyosis Update: Towards a Function-Driven Model of Pathogenesis of the Disorders of Cornification and the Role of Corneocyte Proteins in These Disorders. Advances in Dermatology, 2007, 23, 231-256.	2.0	94
132	The Regulation of Permeability Barrier Homeostasis. Journal of Investigative Dermatology, 2007, 127, 1574-1576.	0.3	87
133	Stratum Corneum Acidification Is Impaired in Moderately Aged Human and Murine Skin. Journal of Investigative Dermatology, 2007, 127, 2847-2856.	0.3	176
134	The skin barrier as an innate immune element. Seminars in Immunopathology, 2007, 29, 3-14.	2.8	333
135	Psychological stress downregulates epidermal antimicrobial peptide expression and increases severity of cutaneous infections in mice. Journal of Clinical Investigation, 2007, 117, 3339-3349.	3.9	193
136	Serine Protease Activity and Residual LEKTI Expression Determine Phenotype in Netherton Syndrome. Journal of Investigative Dermatology, 2006, 126, 1609-1621.	0.3	163
137	Serine Protease Signaling of Epidermal Permeability Barrier Homeostasis. Journal of Investigative Dermatology, 2006, 126, 2074-2086.	0.3	187
138	Glucocorticoid blockade reverses psychological stress-induced abnormalities in epidermal structure and function. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2006, 291, R1657-R1662.	0.9	90
139	Interactions among stratum corneum defensive functions. Experimental Dermatology, 2005, 14, 719-726.	1.4	174
140	Interactions among stratum corneum defensive functions. Experimental Dermatology, 2005, 14, 776-776.	1.4	3
141	Mechanisms by Which Psychologic Stress Alters Cutaneous Permeability Barrier Homeostasis and Stratum Corneum Integrity. Journal of Investigative Dermatology, 2005, 124, 587-595.	0.3	176
142	Stratum Corneum Defensive Functions: An Integrated View. Journal of Investigative Dermatology, 2005, 125, 183-200.	0.3	589
143	Differential Expression of Fatty Acid Transport Proteins in Epidermis and Skin Appendages. Journal of Investigative Dermatology, 2005, 125, 1174-1181.	0.3	75
144	Pro-differentiating effects of oxysterols in keratinocytes. Experimental Dermatology, 2005, 14, 154-155.	1.4	3

#	Article	IF	CITATIONS
145	Peroxisome Proliferator-Activated Receptor (PPAR)-β/δ Stimulates Differentiation and Lipid Accumulation in Keratinocytes. Journal of Investigative Dermatology, 2004, 122, 971-983.	0.3	206
146	Structural and Functional Consequences of Loricrin Mutations in Human Loricrin Keratoderma (Vohwinkel Syndrome with Ichthyosis). Journal of Investigative Dermatology, 2004, 122, 909-922.	0.3	83
147	Peroxisome-Proliferator-Activated Receptor (PPAR)-Î ³ Activation Stimulates Keratinocyte Differentiation. Journal of Investigative Dermatology, 2004, 123, 305-312.	0.3	175
148	The Epidermal Permeability Barrier: From the Early Days at Harvard to Emerging Concepts. Journal of Investigative Dermatology, 2004, 122, xxxvi-xxxix.	0.3	76
149	Basis For Abnormal Desquamation And Permeability Barrier Dysfunction in RXLI. Journal of Investigative Dermatology, 2004, 122, 314-319.	0.3	121
150	Liver X Receptor Activators Display Anti-Inflammatory Activity in Irritant and Allergic Contact Dermatitis Models: Liver-X-Receptor-Specific Inhibition of Inflammation and Primary Cytokine Production. Journal of Investigative Dermatology, 2003, 120, 246-255.	0.3	208
151	Short-Term Glucocorticoid Treatment Compromises Both Permeability Barrier Homeostasis and Stratum Corneum Integrity: Inhibition of Epidermal Lipid Synthesis Accounts for Functional Abnormalities. Journal of Investigative Dermatology, 2003, 120, 456-464.	0.3	300
152	Glycerol Regulates Stratum Corneum Hydration in Sebaceous Gland Deficient (Asebia) Mice. Journal of Investigative Dermatology, 2003, 120, 728-737.	0.3	197
153	pH Directly Regulates Epidermal Permeability Barrier Homeostasis, and Stratum Corneum Integrity/Cohesion. Journal of Investigative Dermatology, 2003, 121, 345-353.	0.3	441
154	Skin lipids and epidermal differentiation in atopic dermatitis. Clinics in Dermatology, 2003, 21, 134-144.	0.8	127
155	NHE1 Regulates the Stratum Corneum Permeability Barrier Homeostasis. Journal of Biological Chemistry, 2002, 277, 47399-47406.	1.6	185
156	Ceramide-dominant barrier repair lipids alleviate childhood atopic dermatitis: Changes in barrier function provide a sensitive indicator of disease activity. Journal of the American Academy of Dermatology, 2002, 47, 198-208.	0.6	406
157	The Aged Epidermal Permeability Barrier. Clinics in Geriatric Medicine, 2002, 18, 103-120.	1.0	129
158	Basis for the permeability barrier abnormality in lamellar ichthyosis. Experimental Dermatology, 2002, 11, 248-256.	1.4	99
159	Topical Peroxisome Proliferator Activated Receptor-α Activators Reduce Inflammation in Irritant and Allergic Contact Dermatitis Models11The authors declared no conflict of interest Journal of Investigative Dermatology, 2002, 118, 94-101.	0.3	157
160	Modulations in Epidermal Calcium Regulate the Expression of Differentiation-Specific Markers. Journal of Investigative Dermatology, 2002, 119, 1128-1136.	0.3	188
161	The Potential of Metabolic Interventions to Enhance Transdermal Drug Delivery. Journal of Investigative Dermatology Symposium Proceedings, 2002, 7, 79-85.	0.8	35
162	Pathogenesis of the Permeability Barrier Abnormality in Epidermolytic Hyperkeratosis11We dedicate this work to Professor Peter O. Fritsch in honor of his 60th birthday Journal of Investigative Dermatology, 2001, 117, 837-847.	0.3	74

#	Article	IF	CITATIONS
163	Desmoglein Isoform Distribution Affects Stratum Corneum Structure and Function. Journal of Cell Biology, 2001, 153, 243-250.	2.3	120
164	Psychological Stress Perturbs Epidermal Permeability Barrier Homeostasis. Archives of Dermatology, 2001, 137, 53-9.	1.7	307
165	Origin of the Corneocyte Lipid Envelope (CLE): Observations in Harlequin Ichthyosis and Cultured Human Keratinocytes. Journal of Investigative Dermatology, 2000, 115, 765-769.	0.3	59
166	Omega-Hydroxyceramides are Required for Corneocyte Lipid Envelope (CLE) Formation and Normal Epidermal Permeability Barrier Function. Journal of Investigative Dermatology, 2000, 114, 185-192.	0.3	147
167	Ichthyosis: Where we have been disorders of cornification: Where we are going. Current Problems in Dermatology, 2000, 12, 170-176.	0.1	4
168	Altered Lamellar Body Secretion and Stratum Corneum Membrane Structure in Netherton Syndrome. Archives of Dermatology, 1999, 135, 823-32.	1.7	92
169	Epidermal pathogenesis of inflammatory dermatoses*1, *2. American Journal of Contact Dermatitis: Official Journal of the American Contact Dermatitis Society, 1999, 10, 119-126.	0.4	135
170	Barrier recovery is impeded at neutral pH, independent of ionic effects: implications for extracellular lipid processing. Archives of Dermatological Research, 1998, 290, 215-222.	1.1	259
171	Low Humidity Stimulates Epidermal DNA Synthesis and Amplifies the Hyperproliferative Response to Barrier Disruption: Implication for Seasonal Exacerbations of Inflammatory Dermatoses. Journal of Investigative Dermatology, 1998, 111, 873-878.	0.3	218
172	The Secretory Granular Cell: The Outermost Granular Cell as a Specialized Secretory Cell. Journal of Investigative Dermatology Symposium Proceedings, 1998, 3, 87-100.	0.8	118
173	Amphiregulin and Nerve Growth Factor Expression Are Regulated by Barrier Status in Murine Epidermis. Journal of Investigative Dermatology, 1997, 108, 73-77.	0.3	54
174	UVB-Induced Alterations in Permeability Barrier Function: Roles for Epidermal Hyperproliferation and Thymocyte-Mediated Response. Journal of Investigative Dermatology, 1997, 108, 769-775.	0.3	148
175	Microwave incubation improves lipolytic enzyme preservation for ultrastructural cytochemistry. The Histochemical Journal, 1997, 29, 387-392.	0.6	28
176	Epidermal injury stimulates prenylation in the epidermis of hairless mice. Archives of Dermatological Research, 1997, 289, 104-110.	1.1	5
177	Matrix metalloproteinase inhibitors reduce phorbol ester-induced cutaneous inflammation and hyperplasia. Archives of Dermatological Research, 1997, 289, 138-144.	1.1	42
178	Acceleration of Barrier Ontogenesis in Vitro through Air Exposure. Pediatric Research, 1997, 41, 293-299.	1.1	53
179	Hypothyroidism Delays Fetal Stratum Corneum Development in Mice. Pediatric Research, 1997, 42, 610-614.	1.1	31
180	The epidermal hyperplasia associated with repeated barrier disruption by acetone treatment or tape stripping cannot be attributed to increased water loss. Archives of Dermatological Research, 1996, 288, 230-238.	1.1	117

#	Article	IF	CITATIONS
181	Stratum corneum architecture, metabolic activity and interactivity with subjacent cell layers. Experimental Dermatology, 1996, 5, 191-201.	1.4	128
182	Decreased Epidermal Lipid Synthesis Accounts for Altered Barrier Function in Aged Mice. Journal of Investigative Dermatology, 1996, 106, 1064-1069.	0.3	99
183	Optimization of Physiological Lipid Mixtures for Barrier Repair. Journal of Investigative Dermatology, 1996, 106, 1096-1101.	0.3	240
184	Barrier Disruption Stimulates Interleukin-1α Expression and Release from a Pre-Formed Pool in Murine Epidermis. Journal of Investigative Dermatology, 1996, 106, 397-403.	0.3	249
185	Stratum Corneum Structure and Function Correlates with Phenotype in Psoriasis. Journal of Investigative Dermatology, 1996, 107, 558-564.	0.3	169
186	The epidermal hyperplasia associated with repeated barrier disruption by acetone treatment or tape stripping cannot be attributed to increased water loss. Archives of Dermatological Research, 1996, 288, 230-238.	1.1	88
187	Epidermal Abnormalities May Distinguish Type 2 from Type 1 and Type 3 of Gaucher Disease. Pediatric Research, 1996, 39, 134-141.	1.1	84
188	Barrier function coordinately regulates epidermal IL-1 and IL-1 receptor antagonist mRNA levels. Experimental Dermatology, 1994, 3, 56-60.	1.4	59
189	Localization and quantitation of calcium pools and calcium binding sites in cultured human keratinocytes. Journal of Cellular Physiology, 1993, 154, 101-112.	2.0	27
190	Inhibition of Cholesterol and Sphingolipid Synthesis Causes Paradoxical Effects on Permeability Barrier Homeostasis. Journal of Investigative Dermatology, 1993, 101, 185-190.	0.3	31
191	Localization of calcium in murine epidermis following disruption and repair of the permeability barrier. Cell and Tissue Research, 1992, 270, 503-512.	1.5	184
192	Sonophoresis. II. Examination of the mechanism(s) of ultrasound-enhanced transdermal drug delivery. Pharmaceutical Research, 1992, 09, 1043-1047.	1.7	148
193	Localization and regulation of epidermal 3-hydroxy-3-methylglutaryl-coenzyme A reductase activity by barrier requirements. Lipids and Lipid Metabolism, 1991, 1083, 71-79.	2.6	32
194	Structural and Lipid Biochemical Correlates of the Epidermal Permeability Barrier. Advances in Lipid Research, 1991, 24, 1-26.	1.8	600
195	Membrane Structures in Normal and Essential Fatty Acid-Deficient Stratum Corneum: Characterization by Ruthenium Tetroxide Staining and X-Ray Diffraction. Journal of Investigative Dermatology, 1991, 96, 215-223.	0.3	284
196	The Biochemistry and Function of Stratum Corneum Lipids. Advances in Lipid Research, 1991, 24, 27-56.	1.8	241
197	Antimicrobial Activity of Stratum Corneum Lipids from Normal and Essential Fatty Acid-Deficient Mice. Journal of Investigative Dermatology, 1989, 92, 632-638.	0.3	80
198	Biochemical and morphological characterization of growth and differentiation of normal human neonatal keratinocytes in a serum-free medium. Journal of Cellular Physiology, 1988, 134, 229-237.	2.0	165

#	Article	IF	CITATIONS
199	Lipid content and metabolism of human keratinocyte cultures grown at the air-medium interface. Journal of Cellular Physiology, 1988, 136, 103-110.	2.0	53
200	Structure and function of the stratum corneum permeability barrier. Drug Development Research, 1988, 13, 97-105.	1.4	101
201	Free sterol metabolism and low density lipoprotein receptor expression as differentiation markers of cultured human keratinocytes. Journal of Cellular Physiology, 1987, 132, 428-440.	2.0	41
202	Avian sebokeratocytes and marine mammal lipokeratinocytes: Structural, lipid biochemical, and functional considerations. American Journal of Anatomy, 1987, 180, 161-177.	0.9	75
203	Cytochemical and Biochemical Localization of Lipase and Sphingomyelinase Activity in Mammalian Epidermis. Journal of Investigative Dermatology, 1986, 86, 591-597.	0.3	117
204	Influence of topical and systemic retinoids on basal cell carcinoma cell membranes. Cancer, 1981, 48, 932-938.	2.0	35
205	Intraepidermal cell surface fine structure: Preservation and examination at high resolution. The Anatomical Record, 1979, 193, 927-937.	2.3	4
206	Membrane alterations during cornification of mammalian squamous epithelia: A freeze-fracture, tracer, and thin-section study. The Anatomical Record, 1977, 189, 577-593.	2.3	195
207	The fate of Staphylococcal exfoliatin in newborn and adult mice*. British Journal of Dermatology, 1976, 95, 275-284.	1.4	53
208	Cetacean epidermal specialization: A review. Journal of Veterinary Medicine Series C: Anatomia Histologia Embryologia, 0, , .	0.3	1