Wen-Hui Shen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1431592/publications.pdf

Version: 2024-02-01

81351 57681 6,530 110 46 76 citations h-index g-index papers 112 112 112 5978 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Arabidopsis CHROMATIN REMODELING 19 acts as a transcriptional repressor and contributes to plant pathogen resistance. Plant Cell, 2022, 34, 1100-1116.	3.1	13
2	H3K36 methyltransferase SDG708 enhances drought tolerance by promoting abscisic acid biosynthesis in rice. New Phytologist, 2021, 230, 1967-1984.	3.5	18
3	OsChz1 acts as a histone chaperone in modulating chromatin organization and genome function in rice. Nature Communications, 2020, $11,5717$.	5 . 8	9
4	NAP1-Related Protein 1 (NRP1) has multiple interaction modes for chaperoning histones H2A-H2B. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 30391-30399.	3.3	13
5	The histone methylation readers MRG1/MRG2 and the histone chaperones NRP1/NRP2 associate in fineâ€tuning Arabidopsis flowering time. Plant Journal, 2020, 103, 1010-1024.	2.8	13
6	MRG1/2 histone methylation readers and HD2C histone deacetylase associate in repression of the florigen gene <i>FT</i> to set a proper flowering time in response to dayâ€length changes. New Phytologist, 2020, 227, 1453-1466.	3.5	22
7	Arabidopsis SDG8 Potentiates the Sustainable Transcriptional Induction of the Pathogenesis-Related Genes PR1 and PR2 During Plant Defense Response. Frontiers in Plant Science, 2020, 11, 277.	1.7	36
8	AtINO80 represses photomorphogenesis by modulating nucleosome density and H2A.Z incorporation in light-related genes. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 33679-33688.	3.3	22
9	Evolution and conservation of polycomb repressive complex 1 core components and putative associated factors in the green lineage. BMC Genomics, 2019, 20, 533.	1.2	27
10	H3K4me2 functions as a repressive epigenetic mark in plants. Epigenetics and Chromatin, 2019, 12, 40.	1.8	51
11	The transcription factor OsSUF4 interacts with SDG725 in promoting H3K36me3 establishment. Nature Communications, 2019, 10, 2999.	5.8	29
12	AtINO80 and AtARP5 physically interact and play common as well as distinct roles in regulating plant growth and development. New Phytologist, 2019, 223, 336-353.	3.5	21
13	Functional Coordination of the Chromatin-Remodeling Factor AtlNO80 and the Histone Chaperones NRP1/2 in Inflorescence Meristem and Root Apical Meristem. Frontiers in Plant Science, 2019, 10, 115.	1.7	12
14	Arabidopsis ZUOTIN RELATED FACTOR1 Proteins Are Required for Proper Embryonic and Post-Embryonic Root Development. Frontiers in Plant Science, 2019, 10, 1498.	1.7	3
15	Interactive and noninteractive roles of histone H2B monoubiquitination and H3K36 methylation in the regulation of active gene transcription and control of plant growth and development. New Phytologist, 2019, 221, 1101-1116.	3 . 5	53
16	Histone chaperones play crucial roles in maintenance of stem cell niche during plant root development. Plant Journal, 2018, 95, 86-100.	2.8	20
17	Chromatinâ€remodeling factor OslNO80 is involved in regulation of gibberellin biosynthesis and is crucial for rice plant growth and development. Journal of Integrative Plant Biology, 2018, 60, 144-159.	4.1	30
18	Linking PHYTOCHROME-INTERACTING FACTOR to Histone Modification in Plant Shade Avoidance. Plant Physiology, 2018, 176, 1341-1351.	2.3	55

#	Article	IF	CITATIONS
19	jaw-1D: a gain-of-function mutation responsive to paramutation-like induction of epigenetic silencing. Journal of Experimental Botany, 2018, 70, 459-468.	2.4	4
20	Structural Analysis of the Arabidopsis AL2-PAL and PRC1 Complex Provides Mechanistic Insight into Active-to-Repressive Chromatin State Switch. Journal of Molecular Biology, 2018, 430, 4245-4259.	2.0	11
21	Histone lysine methyltransferases Bna <scp>SDG</scp> 8.A and Bna <scp>SDG</scp> 8.C are involved in the floral transition in <i>Brassica napus</i> Plant Journal, 2018, 95, 672-685.	2.8	26
22	Chromatin modulation and gene regulation in plants: insight about PRC1 function. Biochemical Society Transactions, 2018, 46, 957-966.	1.6	31
23	Conservation and diversification of polycomb repressive complex 2 (PRC2) proteins in the green lineage. Briefings in Functional Genomics, 2017, 16, 106-119.	1.3	24
24	The Histone Chaperone NRP1 Interacts with WEREWOLF to Activate <i>GLABRA2</i> in Arabidopsis Root Hair Development. Plant Cell, 2017, 29, 260-276.	3.1	35
25	SDG2-Mediated H3K4me3 Is Crucial for Chromatin Condensation and Mitotic Division during Male Gametogenesis in Arabidopsis. Plant Physiology, 2017, 174, 1205-1215.	2.3	32
26	SET DOMAIN GROUP701 encodes a H3K4â€methytransferase and regulates multiple key processes of rice plant development. New Phytologist, 2017, 215, 609-623.	3.5	44
27	Arabidopsis Flower and Embryo Developmental Genes are Repressed in Seedlings by Different Combinations of Polycomb Group Proteins in Association with Distinct Sets of Cis-regulatory Elements. PLoS Genetics, 2016, 12, e1005771.	1.5	125
28	Transcription factors AS1 and AS2 interact with LHP1 to repress <i>KNOX</i> genes in <i>Arabidopsis</i> . Journal of Integrative Plant Biology, 2016, 58, 959-970.	4.1	45
29	Arabidopsis PRC1 core component AtRING1 regulates stem cell-determining carpel development mainly through repression of class I KNOX genes. BMC Biology, 2016, 14, 112.	1.7	30
30	The evolutionary landscape of PRC1 core components in green lineage. Planta, 2016, 243, 825-846.	1.6	20
31	ZRF1 Chromatin Regulators Have Polycomb Silencing and Independent Roles in Development. Plant Physiology, 2016, 172, 1746-1759.	2.3	23
32	Distinct roles of the histone chaperones <scp>NAP</scp> 1 and <scp>NRP</scp> and the chromatinâ€remodeling factor <scp>INO</scp> 80 in somatic homologous recombination in <i>Arabidopsis thaliana</i> . Plant Journal, 2016, 88, 397-410.	2.8	44
33	SET DOMAIN GROUP 708, a histone H3 lysine 36â€specific methyltransferase, controls flowering time in rice (Oryza sativa). New Phytologist, 2016, 210, 577-588.	3.5	49
34	Interplay of the histone methyltransferases SDG8 and SDG26 in the regulation of transcription and plant flowering and development. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2016, 1859, 581-590.	0.9	27
35	Genome-wide gene expression profiling to investigate molecular phenotypes of Arabidopsis mutants deprived in distinct histone methyltransferases and demethylases. Genomics Data, 2015, 4, 143-145.	1.3	18
36	The chromatinâ€remodeling factor At <scp>INO</scp> 80 plays crucial roles in genome stability maintenance and in plant development. Plant Journal, 2015, 82, 655-668.	2.8	57

3

#	Article	IF	Citations
37	The trx <scp>G</scp> family histone methyltransferase <scp>SET DOMAIN GROUP</scp> Â26 promotes flowering via a distinctive genetic pathway. Plant Journal, 2015, 81, 316-328.	2.8	61
38	A methyltransferase required for proper timing of the vernalization response in <i>Arabidopsis</i> Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2269-2274.	3.3	43
39	Histone H2A/H2B chaperones: from molecules to chromatinâ€based functions in plant growth and development. Plant Journal, 2015, 83, 78-95.	2.8	83
40	Arabidopsis AL PHD-PRC1 Complexes Promote Seed Germination through H3K4me3-to-H3K27me3 Chromatin State Switch in Repression of Seed Developmental Genes. PLoS Genetics, 2014, 10, e1004091.	1.5	176
41	Dynamic regulation and function of histone monoubiquitination in plants. Frontiers in Plant Science, 2014, 5, 83.	1.7	64
42	Combinatorial functions of diverse histone methylations in <i><scp>A</scp>rabidopsis thaliana</i> flowering time regulation. New Phytologist, 2014, 201, 312-322.	3.5	66
43	Histone H2B Monoubiquitination is Involved in the Regulation of Cutin and Wax Composition in Arabidopsis thaliana. Plant and Cell Physiology, 2014, 55, 455-466.	1.5	86
44	Histone chaperone <scp>ASF1</scp> is involved in gene transcription activation in response to heat stress in <scp><i>A</i></scp> <i>rabidopsis thaliana</i> . Plant, Cell and Environment, 2014, 37, 2128-2138.	2.8	72
45	Functional conservation and divergence of J-domain-containing ZUO1/ZRF orthologs throughout evolution. Planta, 2014, 239, 1159-1173.	1.6	27
46	Epigenetic regulation of rice flowering and reproduction. Frontiers in Plant Science, 2014, 5, 803.	1.7	61
47	H3K36 Methylation Is Involved in Promoting Rice Flowering. Molecular Plant, 2013, 6, 975-977.	3.9	42
48	The Polycomb Complex PRC1: Composition and Function in Plants. Journal of Genetics and Genomics, 2013, 40, 231-238.	1.7	59
49	A LIM Domain Protein from Tobacco Involved in Actin-Bundling and Histone Gene Transcription. Molecular Plant, 2013, 6, 483-502.	3.9	33
50	SDG2-Mediated H3K4 Methylation Is Required for Proper Arabidopsis Root Growth and Development. PLoS ONE, 2013, 8, e56537.	1.1	69
51	NAP1 Family Histone Chaperones Are Required for Somatic Homologous Recombination in Arabidopsis. Plant Cell, 2012, 24, 1437-1447.	3.1	77
52	Histone variants and chromatin assembly in plant abiotic stress responses. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2012, 1819, 343-348.	0.9	83
53	H3K36 methylation is critical for brassinosteroidâ€regulated plant growth and development in rice. Plant Journal, 2012, 70, 340-347.	2.8	93
54	TCP transcription factors interact with AS2 in the repression of class†⟨i>KNOX⟨/i> genes in ⟨i>Arabidopsis thaliana⟨/i>. Plant Journal, 2012, 71, 99-107.	2.8	94

#	Article	IF	CITATIONS
55	Chromatin modification and remodelling: a regulatory landscape for the control of Arabidopsis defence responses upon pathogen attack. Cellular Microbiology, 2012, 14, 829-839.	1.1	65
56	Histone modifications in transcriptional activation during plant development. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2011, 1809, 567-576.	0.9	195
57	<i>Arabidopsis</i> homologues of the histone chaperone ASF1 are crucial for chromatin replication and cell proliferation in plant development. Plant Journal, 2011, 66, 443-455.	2.8	79
58	Phylogenetic analysis and classification of the Brassica rapa SET-domain protein family. BMC Plant Biology, 2011, 11, 175.	1.6	42
59	HIGH NITROGEN INSENSITIVE 9 (HNI9)-mediated systemic repression of root NO ₃ ^{â°'} uptake is associated with changes in histone methylation. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 13329-13334.	3.3	108
60	SDG714 Regulates Specific Gene Expression and Consequently Affects Plant Growth via H3K9 Dimethylation. Journal of Integrative Plant Biology, 2010, 52, 420-430.	4.1	12
61	Arabidopsis Histone Methyltransferase SET DOMAIN GROUP8 Mediates Induction of the Jasmonate/Ethylene Pathway Genes in Plant Defense Response to Necrotrophic Fungi Â. Plant Physiology, 2010, 154, 1403-1414.	2.3	181
62	<i>Arabidopsis SET DOMAIN GROUP2</i> Is Required for H3K4 Trimethylation and Is Crucial for Both Sporophyte and Gametophyte Development Â. Plant Cell, 2010, 22, 3232-3248.	3.1	156
63	The Arabidopsis PRC1-like ring-finger proteins are necessary for repression of embryonic traits during vegetative growth. Cell Research, 2010, 20, 1332-1344.	5.7	143
64	Chromatin Remodeling in Stem Cell Maintenance in Arabidopsis thaliana. Molecular Plant, 2009, 2, 600-609.	3.9	68
65	A Truncated Arabidopsis NUCLEOSOME ASSEMBLY PROTEIN 1, AtNAP1;3T, Alters Plant Growth Responses to Abscisic Acid and Salt in the Atnap1;3-2 Mutant. Molecular Plant, 2009, 2, 688-699.	3.9	45
66	An update on histone lysine methylation in plants. Progress in Natural Science: Materials International, 2009, 19, 407-413.	1.8	29
67	The E2 ubiquitinâ€conjugating enzymes, AtUBC1 and AtUBC2, play redundant roles and are involved in activation of <i>FLC</i> expression and repression of flowering in <i> Arabidopsis thaliana</i> Journal, 2009, 57, 279-288.	2.8	162
68	Molecular and reverse genetic characterization of <i>NUCLEOSOME ASSEMBLY PROTEIN1</i> (<i>NAP1</i>) genes unravels their function in transcription and nucleotide excision repair in <i>Arabidopsis thaliana</i> . Plant Journal, 2009, 59, 27-38.	2.8	71
69	A Nonâ€canonical Transferred DNA Insertion at the <i>BRI1</i> Locus in <i>Arabidopsis thaliana</i> Journal of Integrative Plant Biology, 2009, 51, 367-373.	4.1	8
70	<i>SET DOMAIN GROUP25</i> Encodes a Histone Methyltransferase and Is Involved in <i>FLOWERING LOCUS C</i> Activation and Repression of Flowering. Plant Physiology, 2009, 151, 1476-1485.	2.3	102
71	Polycomb Silencing of KNOX Genes Confines Shoot Stem Cell Niches in Arabidopsis. Current Biology, 2008, 18, 1966-1971.	1.8	246
72	Di- and Tri- but Not Monomethylation on Histone H3 Lysine 36 Marks Active Transcription of Genes Involved in Flowering Time Regulation and Other Processes in <i>Arabidopsis thaliana</i> and Cellular Biology, 2008, 28, 1348-1360.	1.1	283

#	Article	IF	Citations
73	Chromatin Remodeling in Arabidopsis Root Growth. Plant Signaling and Behavior, 2007, 2, 160-162.	1.2	3
74	G1/S Transition and the Rb-E2F Pathway. Plant Cell Monographs, 2007, , 59-73.	0.4	2
75	Molecular characterization of three rice SET-domain proteins. Plant Science, 2007, 172, 1072-1078.	1.7	16
76	Plant SET―and RINGâ€associated domain proteins in heterochromatinization. Plant Journal, 2007, 52, 914-926.	2.8	48
77	Arabidopsis NRP1 and NRP2 Encode Histone Chaperones and Are Required for Maintaining Postembryonic Root Growth. Plant Cell, 2006, 18, 2879-2892.	3.1	125
78	Molecular and functional characterization of Arabidopsis Cullin 3A. Plant Journal, 2005, 41, 386-399.	2.8	91
79	Prevention of early flowering by expression of FLOWERING LOCUS C requires methylation of histone H3 K36. Nature Cell Biology, 2005, 7, 1256-1260.	4.6	277
80	Interacting Proteins and Differences in Nuclear Transport Reveal Specific Functions for the NAP1 Family Proteins in Plants. Plant Physiology, 2005, 138, 1446-1456.	2.3	61
81	Ectopic Expression of the NtSET1 Histone Methyltransferase Inhibits Cell Expansion, and Affects Cell Division and Differentiation in Tobacco Plants. Plant and Cell Physiology, 2004, 45, 1715-1719.	1.5	18
82	Molecular characterization of the tobacco SET domain protein NtSET1 unravels its role in histone methylation, chromatin binding, and segregation. Plant Journal, 2004, 40, 699-711.	2.8	52
83	Plants Contain a High Number of Proteins Showing Sequence Similarity to the Animal SUV39H Family of Histone Methyltransferases. Annals of the New York Academy of Sciences, 2004, 1030, 661-669.	1.8	21
84	Regulation of biosynthesis and intracellular localization of rice and tobacco homologues of nucleosome assembly proteinÂ1. Planta, 2003, 216, 561-570.	1.6	47
85	The Tobacco A-Type Cyclin, Nicta;CYCA3;2, at the Nexus of Cell Division and Differentiation. Plant Cell, 2003, 15, 2763-2777.	3.1	117
86	The AtRbx1 Protein Is Part of Plant SCF Complexes, and Its Down-regulation Causes Severe Growth and Developmental Defects. Journal of Biological Chemistry, 2002, 277, 50069-50080.	1.6	59
87	Null Mutation of AtCUL1 Causes Arrest in Early Embryogenesis in Arabidopsis. Molecular Biology of the Cell, 2002, 13, 1916-1928.	0.9	153
88	The plant E2F–Rb pathway and epigenetic control. Trends in Plant Science, 2002, 7, 505-511.	4.3	102
89	A gene trap Dissociation insertion line, associated with a RING-H2 finger gene, shows tissue specific and developmental regulated expression of the gene in Arabidopsis. Gene, 2002, 290, 63-71.	1.0	14
90	NtSET1, a member of a newly identified subgroup of plant SET-domain-containing proteins, is chromatin-associated and its ectopic overexpression inhibits tobacco plant growth. Plant Journal, 2002, 28, 371-383.	2.8	35

#	Article	IF	CITATIONS
91	The subcellular localization of an unusual rice calmodulin isoform, OsCaM61, depends on its prenylation status. Plant Molecular Biology, 2002, 48, 203-210.	2.0	33
92	Sub-cellular localisation of GFP-tagged tobacco mitotic cyclins during the cell cycle and after spindle checkpoint activation. Plant Journal, 2001, 28, 569-581.	2.8	52
93	The plant cell cycle: G1/S regulation. Euphytica, 2001, 118, 223-236.	0.6	14
94	Cell cycle-dependent proteolysis and ectopic overexpression of cyclin B1 in tobacco BY2 cells. Plant Journal, 2000, 24, 763-773.	2.8	93
95	Regulation of biosynthesis and cellular localization of Sp32 annexins in tobacco BY2 cells. Plant Molecular Biology, 1999, 39, 361-372.	2.0	44
96	T-DNA Transfer to Maize Plants. Molecular Biotechnology, 1999, 13, 165-170.	1.3	3
97	Excision of Ds1 from the genome of maize streak virus in response to different transposase-encoding genes. Plant Molecular Biology, 1998, 36, 387-392.	2.0	9
98	Protein complexes binding to cis elements of the plant histone gene promoters: multiplicity, phosphorylation and cell cycle alteration., 1997, 33, 367-379.		35
99	Multiple A-type cyclins express sequentially during the cell cycle in Nicotiana tabacum BY2 cells. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 13819-13824.	3.3	108
100	The binding motifs forAc transposase are absolutely required for excision ofDs1 in maize. Molecular Genetics and Genomics, 1995, 248, 527-534.	2.4	15
101	Vectors based on maize streak virus can replicate to high copy numbers in maize plants. Journal of General Virology, 1995, 76, 965-969.	1.3	35
102	T-DNA Transfer to Maize Plants., 1995, 44, 343-350.		0
103	Amplification and expression of the beta-glucuronidase gene in maize plants by vectors based on maize streak virus. Plant Journal, 1994, 5, 227-236.	2.8	40
104	T-DNA transfer to maize cells: histochemical investigation of beta-glucuronidase activity in maize tissues Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 1488-1492.	3.3	59
105	Mechanism of Ds1 excision from the genome of maize streak virus. Molecular Genetics and Genomics, 1992, 233, 388-394.	2.4	14
106	Excision of a transposable element from a viral vector introduced into maize plants by agroinfection Plant Journal, 1992, 2, 35-42.	2.8	26
107	Excision of a transposable element from a viral vector introduced into maize plants by agroinfection. Plant Journal, 1992, 2, 35-42.	2.8	0
108	Mutational analysis of the small intergenic region of maize streak virus. Virology, 1991, 183, 721-730.	1.1	27

#	Article	IF	CITATIONS
109	High Sensitivity to Auxin is a Common Feature of Hairy Root. Plant Physiology, 1990, 94, 554-560.	2.3	73
110	Hairy roots are more sensitive to auxin than normal roots. Proceedings of the National Academy of Sciences of the United States of America, 1988, 85, 3417-3421.	3. 3	216