Cristina Scielzo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1431426/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Identification of proangiogenic TIE2-expressing monocytes (TEMs) in human peripheral blood and cancer. Blood, 2007, 109, 5276-5285.	0.6	451
2	Stereotyped patterns of somatic hypermutation in subsets of patients with chronic lymphocytic leukemia: implications for the role of antigen selection in leukemogenesis. Blood, 2008, 111, 1524-1533.	0.6	285
3	The pattern of CD38 expression defines a distinct subset of chronic lymphocytic leukemia (CLL) patients at risk of disease progression. Blood, 2003, 101, 1262-1269.	0.6	221
4	Constitutive activation of distinct BCR-signaling pathways in a subset of CLL patients: a molecular signature of anergy. Blood, 2008, 112, 188-195.	0.6	212
5	Monoclonal CD5+ and CD5- B-lymphocyte expansions are frequent in the peripheral blood of the elderly. Blood, 2004, 103, 2337-2342.	0.6	210
6	CD100/Plexin-B1 interactions sustain proliferation and survival of normal and leukemic CD5+ B lymphocytes. Blood, 2003, 101, 1962-1969.	0.6	139
7	General population low-count CLL-like MBL persists over time without clinical progression, although carrying the same cytogenetic abnormalities of CLL. Blood, 2011, 118, 6618-6625.	0.6	131
8	The immunoglobulin gene repertoire of low-count chronic lymphocytic leukemia (CLL)–like monoclonal B lymphocytosis is different from CLL: diagnostic implications for clinical monitoring. Blood, 2009, 114, 26-32.	0.6	122
9	Expression and function of toll like receptors in chronic lymphocytic leukaemia cells. British Journal of Haematology, 2009, 144, 507-516.	1.2	116
10	MicroRNA and proliferation control in chronic lymphocytic leukemia: functional relationship between miR-221/222 cluster and p27. Blood, 2010, 115, 3949-3959.	0.6	101
11	T-cell defects in patients with ARPC1B germline mutations account for combined immunodeficiency. Blood, 2018, 132, 2362-2374.	0.6	99
12	Targeting Macrophages Sensitizes Chronic Lymphocytic Leukemia to Apoptosis and Inhibits Disease Progression. Cell Reports, 2016, 14, 1748-1760.	2.9	90
13	HS1 has a central role in the trafficking and homing of leukemic B cells. Blood, 2010, 116, 3537-3546.	0.6	89
14	Ageâ€dependent accumulation of monoclonal CD4 ⁺ CD8 ⁺ double positive T lymphocytes in the peripheral blood of the elderly. British Journal of Haematology, 2007, 139, 780-790.	1.2	84
15	How the microenvironment wires the natural history of chronic lymphocytic leukemia. Seminars in Cancer Biology, 2014, 24, 43-48.	4.3	76
16	Targeting B-cell anergy in chronic lymphocytic leukemia. Blood, 2013, 121, 3879-3888.	0.6	73
17	HS1 protein is differentially expressed in chronic lymphocytic leukemia patient subsets with good or poor prognoses. Journal of Clinical Investigation, 2005, 115, 1644-1650.	3.9	72
18	ZAP-70 is expressed by normal and malignant human B-cell subsets of different maturational stage. Leukemia, 2006, 20, 689-695.	3.3	66

CRISTINA SCIELZO

#	Article	IF	CITATIONS
19	A novel Rag2â^'/â^'î³câ^'/â^'-xenograft model of human CLL. Blood, 2010, 115, 1605-1609.	0.6	58
20	Invariant NKT cells contribute to chronic lymphocytic leukemia surveillance and prognosis. Blood, 2017, 129, 3440-3451.	0.6	56
21	HIF-1α regulates the interaction of chronic lymphocytic leukemia cells with the tumor microenvironment. Blood, 2016, 127, 1987-1997.	0.6	52
22	Targeting the LYN/HS1 signaling axis in chronic lymphocytic leukemia. Blood, 2013, 121, 2264-2273.	0.6	50
23	CLL-like monoclonal B-cell lymphocytosis: Are we all bound to have it?. Seminars in Cancer Biology, 2010, 20, 384-390.	4.3	47
24	From normal to clonal B cells: Chronic lymphocytic leukemia (CLL) at the crossroad between neoplasia and autoimmunity. Autoimmunity Reviews, 2007, 7, 127-131.	2.5	46
25	Xenograft models of chronic lymphocytic leukemia: problems, pitfalls and future directions. Leukemia, 2013, 27, 534-540.	3.3	38
26	The functional in vitro response to CD40 ligation reflects a different clinical outcome in patients with chronic lymphocytic leukemia. Leukemia, 2011, 25, 1760-1767.	3.3	37
27	The characterization of chemokine production and chemokine receptor expression reveals possible functional cross-talks in AML blasts with monocytic differentiation. Experimental Hematology, 2003, 31, 495-503.	0.2	31
28	Functional Differences between IgM and IgD Signaling in Chronic Lymphocytic Leukemia. Journal of Immunology, 2016, 197, 2522-2531.	0.4	31
29	3D Bioprinting Allows the Establishment of Long-Term 3D Culture Model for Chronic Lymphocytic Leukemia Cells. Frontiers in Immunology, 2021, 12, 639572.	2.2	26
30	B lymphocytes contribute to stromal reaction in pancreatic ductal adenocarcinoma. Oncolmmunology, 2020, 9, 1794359.	2.1	25
31	Modeling the Leukemia Microenviroment In Vitro. Frontiers in Oncology, 2020, 10, 607608.	1.3	23
32	HS1 complexes with cytoskeleton adapters in normal and malignant chronic lymphocytic leukemia B cells. Leukemia, 2007, 21, 2067-2070.	3.3	22
33	An overview of chronic lymphocytic leukaemia biology. Best Practice and Research in Clinical Haematology, 2010, 23, 21-32.	0.7	22
34	A retinoic acid-dependent stroma-leukemia crosstalk promotes chronic lymphocytic leukemia progression. Nature Communications, 2018, 9, 1787.	5.8	22
35	CD38 modifications in chronic lymphocytic leukemia: are they relevant?. Leukemia, 2004, 18, 1733-1735.	3.3	21
36	Synthetic high-density lipoproteins as targeted monotherapy for chronic lymphocytic leukemia. Oncotarget, 2017, 8, 11219-11227.	0.8	21

CRISTINA SCIELZO

#	Article	IF	CITATIONS
37	Three-dimensional co-culture model of chronic lymphocytic leukemia bone marrow microenvironment predicts patient-specific response to mobilizing agents. Haematologica, 2021, 106, 2334-2344.	1.7	18
38	How the microenvironment shapes chronic lymphocytic leukemia: the cytoskeleton connection. Leukemia and Lymphoma, 2010, 51, 1371-1374.	0.6	15
39	Inhibition of chronic lymphocytic leukemia progression by full-length chromogranin A and its N-terminal fragment in mouse models. Oncotarget, 0, 7, 41725-41736.	0.8	9
40	Establishment and Characterization of PCL12, a Novel CD5+ Chronic Lymphocytic Leukaemia Cell Line. PLoS ONE, 2015, 10, e0130195.	1.1	8
41	Computational analysis of the evolutionarily conserved Missing In Metastasis/Metastasis Suppressor 1 gene predicts novel interactions, regulatory regions and transcriptional control. Scientific Reports, 2019, 9, 4155.	1.6	4
42	3D-STED Super-Resolution Microscopy Reveals Distinct Nanoscale Organization of the Hematopoietic Cell-Specific Lyn Substrate-1 (HS1) in Normal and Leukemic B Cells. Frontiers in Cell and Developmental Biology, 2021, 9, 655773.	1.8	3
43	Novel Mouse Models of Chronic Lymphocytic Leukemia (CLL) Unravel the Molecular Mechanisms Controlling Bone Marrow Involvement by Leukemic B Cells Blood, 2009, 114, 360-360.	0.6	3
44	From a 2DE-Gel Spot to Protein Function: Lesson Learned From HS1 in Chronic Lymphocytic Leukemia. Journal of Visualized Experiments, 2014, , e51942.	0.2	2
45	CLL-Like MBL In the General Population Persist Over Time, without Clinical Progression, Though Carrying the Same Cytogenetic Abnormalities of CLL. Blood, 2010, 116, 2440-2440.	0.6	1
46	A Molecular Signature of Anergy Detected in a Subset of CLL Patients Blood, 2007, 110, 742-742.	0.6	1
47	The Immunoglobulin Gene Repertoire of Low-Count CLL-Like MBL Is Different from CLL: Diagnostic Considerations and Implications for Clinical Monitoring. Blood, 2008, 112, 779-779.	0.6	0
48	Targeting the LYN/HS1 Signaling Axis in Chronic Lymphocytic Leukemia. Blood, 2012, 120, 928-928.	0.6	0
49	Targeting B Cell Anergy in Chronic Lymphocytic Leukemia. Blood, 2012, 120, 3863-3863.	0.6	0
50	Ibrutinib Differentially Interferes With Surface IgM and IgD BCR Signaling Kinetics In Chronic Lymphocytic Leukemia. Blood, 2013, 122, 4143-4143.	0.6	0
51	Nurse-like Cells Engage Sigm and Sigd on Chronic Lymphocytic Leukemia (CLL) Cells: Implications for BCR Signaling Activation and Functional Outcome. Blood, 2014, 124, 3312-3312.	0.6	0
52	Anergy in CLL: Moving Towards the Clinic. Blood, 2014, 124, 4677-4677.	0.6	0
53	Synthetic High-Density Lipoprotein-like Nanoparticles (HDL NP) Cause Apoptosis and Enhance Killing By B-Cell Receptor and BCL-2 Inhibitors in Chronic Lymphocytic Leukemia (CLL). Blood, 2015, 126, 2949-2949.	0.6	0
54	lgM and lgD Receptors Differentially Contribute to CLL Survival and Chemokine Secretion: Implications for CLL Biology and Treatment. Blood, 2015, 126, 2915-2915.	0.6	0