Linqing Wen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1430981/publications.pdf Version: 2024-02-01

LINOING WEN

#	Article	IF	CITATIONS
1	On the Eccentricity Distribution of Coalescing Black Hole Binaries Driven by the Kozai Mechanism in Globular Clusters. Astrophysical Journal, 2003, 598, 419-430.	1.6	287
2	Understanding the Longâ€Term Spectral Variability of Cygnus Xâ€1 with Burst and Transient Source Experiment and Allâ€Sky Monitor Observations. Astrophysical Journal, 2002, 578, 357-373.	1.6	155
3	Constraining the Properties of Supermassive Black Hole Systems Using Pulsar Timing: Application to 3C 66B. Astrophysical Journal, 2004, 606, 799-803.	1.6	142
4	Gravitational-Wave Cosmology across 29 Decades in Frequency. Physical Review X, 2016, 6, .	2.8	113
5	Geometrical expression for the angular resolution of a network of gravitational-wave detectors. Physical Review D, 2010, 81, .	1.6	104
6	Localization accuracy of compact binary coalescences detected by the third-generation gravitational-wave detectors and implication for cosmology. Physical Review D, 2018, 97, .	1.6	95
7	A Systematic Search for Periodicities in RXTE ASM Data. Astrophysical Journal, Supplement Series, 2006, 163, 372-392.	3.0	88
8	Coherent network detection of gravitational waves: the redundancy veto. Classical and Quantum Gravity, 2005, 22, S1321-S1335.	1.5	80
9	Parkes Pulsar Timing Array constraints on ultralight scalar-field dark matter. Physical Review D, 2018, 98, .	1.6	72
10	The Mock LISA Data Challenges: from Challenge 1B to Challenge 3. Classical and Quantum Gravity, 2008, 25, 184026.	1.5	64
11	Orbital Modulation of Xâ€Rays from Cygnus Xâ€1 in its Hard and Soft States. Astrophysical Journal, 1999, 525, 968-977.	1.6	56
12	Summed parallel infinite impulse response filters for low-latency detection of chirping gravitational waves. Physical Review D, 2012, 86, .	1.6	53
13	The superorbital variability and triple nature of the X-ray source 4U 1820-303. Monthly Notices of the Royal Astronomical Society, 2007, 377, 1006-1016.	1.6	45
14	Report on the second Mock LISA data challenge. Classical and Quantum Gravity, 2008, 25, 114037.	1.5	44
15	First Demonstration of Early Warning Gravitational-wave Alerts. Astrophysical Journal Letters, 2021, 910, L21.	3.0	33
16	SPIIR online coherent pipeline to search for gravitational waves from compact binary coalescences. Physical Review D, 2022, 105, .	1.6	31
17	A Shockâ€patching Code for Ultrarelativistic Fluid Flows. Astrophysical Journal, 1997, 486, 919-927	1.6	30
18	Astrodynamical Space Test of Relativity Using Optical Devices I (ASTROD I)—A class-M fundamental physics mission proposal for Cosmic Vision 2015–2025. Experimental Astronomy, 2009, 23, 491-527.	1.6	30

LINQING WEN

#	Article	IF	CITATIONS
19	Detecting extreme mass ratio inspirals with LISA using time–frequency methods. Classical and Quantum Gravity, 2005, 22, S445-S451.	1.5	27
20	Gravitational wave astronomy: the current status. Science China: Physics, Mechanics and Astronomy, 2015, 58, 1.	2.0	26
21	Improved time–frequency analysis of extreme-mass-ratio inspiral signals in mock LISA data. Classical and Quantum Gravity, 2008, 25, 184031.	1.5	23
22	Towards low-latency real-time detection of gravitational waves from compact binary coalescences in the era of advanced detectors. Physical Review D, 2012, 85, .	1.6	23
23	The next detectors for gravitational wave astronomy. Science China: Physics, Mechanics and Astronomy, 2015, 58, 1.	2.0	23
24	Using negative-latency gravitational wave alerts to detect prompt radio bursts from binary neutron star mergers with the Murchison Widefield Array. Monthly Notices of the Royal Astronomical Society: Letters, 2019, 489, L75-L79.	1.2	22
25	Model-independent test of the parity symmetry of gravity with gravitational waves. European Physical Journal C, 2020, 80, 1.	1.4	21
26	Using deep learning to localize gravitational wave sources. Physical Review D, 2019, 100, .	1.6	20
27	Detecting extreme mass ratio inspirals with LISA using time–frequency methods: II. Search characterization. Classical and Quantum Gravity, 2005, 22, S1359-S1371.	1.5	19
28	X1908+075: An Xâ€Ray Binary with a 4.4 Day Period. Astrophysical Journal, 2000, 532, 1119-1123.	1.6	18
29	GPU-accelerated low-latency real-time searches for gravitational waves from compact binary coalescence. Classical and Quantum Gravity, 2012, 29, 235018.	1.5	16
30	DATA ANALYSIS OF GRAVITATIONAL WAVES USING A NETWORK OF DETECTORS. International Journal of Modern Physics D, 2008, 17, 1095-1104.	0.9	14
31	The Correlated Intensity and Spectral Evolution of Cygnus X-1 During State Transitions. Astrophysical Journal, 2001, 546, L105-L108.	1.6	13
32	GPU-acceleration on a low-latency binary-coalescence gravitational wave search pipeline. Computer Physics Communications, 2018, 231, 62-71.	3.0	11
33	Application of graphics processing units to search pipelines for gravitational waves from coalescing binaries of compact objects. Classical and Quantum Gravity, 2010, 27, 135009.	1.5	10
34	Extraction of binary black hole gravitational wave signals from detector data using deep learning. Physical Review D, 2021, 104, .	1.6	9
35	Gravitational wave astronomy. Frontiers of Physics, 2013, 8, 771-793.	2.4	8
36	Gravitational wave astrophysics, data analysis and multimessenger astronomy. Science China: Physics, Mechanics and Astronomy, 2015, 58, 1.	2.0	7

LINQING WEN

#	Article	IF	CITATIONS
37	Early Warnings of Binary Neutron Star Coalescence Using the SPIIR Search. Astrophysical Journal Letters, 2022, 927, L9.	3.0	7
38	Gravitational waves: search results, data analysis and parameter estimation. General Relativity and Gravitation, 2015, 47, 11.	0.7	4
39	Low-Latency Detection of Gravitational Waves. , 2010, , .		3
40	Scientific Benefit of Enlarging Gravitational Wave Detector Networks. Journal of Physics: Conference Series, 2012, 363, 012023.	0.3	3
41	Extracting Information about EMRIs using Time-Frequency Methods. AIP Conference Proceedings, 2006,	0.3	2
42	Progress on the Low-Latency Inspiral Gravitational Wave Detection algorithm known as SPIIR. Journal of Physics: Conference Series, 2012, 363, 012027.	0.3	2
43	Photons with sub-Planckian energy cannot efficiently probe space-time foam. Physical Review D, 2014, 90, .	1.6	2
44	EARLY DETECTION AND LOCALIZATION OF GRAVITATIONAL WAVES FROM COMPACT BINARY COALESCENCES. International Journal of Modern Physics D, 2013, 22, 1360011.	0.9	1
45	Semianalytical approach for sky localization of gravitational waves. Physical Review D, 2021, 104, .	1.6	1
46	The superorbital variability and triple nature of the X-ray source 4U 1820–303. AIP Conference Proceedings, 2008, , .	0.3	0
47	Accelerated Searches of Gravitational Waves Using Graphics Processing Units. , 2010, , .		0
48	DETECTING GRAVITATIONAL WAVES AND THEIR ELECTROMAGNETIC COUNTERPARTS. International Journal of Modern Physics D, 2011, 20, 1883-1890.	0.9	0
49	The development of ground based gravitational wave astronomy and opportunities for Australia–China collaboration. International Journal of Modern Physics A, 2015, 30, 1545019.	0.5	0
50	BENEFIT OF A LARGER DETECTOR ARRAY FOR PROMPT GRAVITATIONAL WAVE DETECTION. , 2015, , .		0