Zhiping Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1430972/publications.pdf

Version: 2024-02-01

	126907	74163
6,338	33	75
citations	h-index	g-index
		2276
//	//	3376
docs citations	times ranked	citing authors
	citations 77	6,338 33 citations h-index 77 77

#	Article	IF	CITATIONS
1	î ² -Perfluoroalkyl Peroxides as Fluorinated C3-Building Blocks for the Construction of Benzo[4,5]imidazo[1,2-a]pyridines. Journal of Organic Chemistry, 2022, , .	3.2	4
2	Concomitant functionalization of two different ketones by merging BrÃ,nsted acid catalysis and radical relay coupling. Organic Chemistry Frontiers, 2022, 9, 1561-1566.	4.5	2
3	Copper-Catalyzed Three-Component Germyl Peroxidation of Alkenes. Organic Letters, 2022, 24, 2425-2430.	4.6	21
4	Threeâ€Component Coupling of αâ€Trifluoromethyl Carbonyls, Azides and Amines for the Regioselective Synthesis of 1,4,5â€Trisubstituted 1,2,3â€Triazoles. Advanced Synthesis and Catalysis, 2022, 364, 1402-1408.	4.3	14
5	Recent Advances in C–F Bond Activation of Acyl Fluorides Directed toward Catalytic Transformation by Transition Metals, N-Heterocyclic Carbenes, or Phosphines. Synthesis, 2022, 54, 3667-3697.	2.3	17
6	Pd/NHC-Controlled Regiodivergent Defluorinative Allylation of <i>gem</i> -Difluorocyclopropanes with Allylboronates. ACS Catalysis, 2022, 12, 6495-6505.	11.2	30
7	Tandem defluorination/annulation of î±-CF3 carbonyls with bis-nucleophiles: Stereodivergent synthesis of 2-alkylidene-1,3-heterocycles. Tetrahedron Letters, 2022, , 153902.	1.4	5
8	[4+1] Cyclization of αâ€CF ₃ Carbonyls with Hydrazides: Synthesis of 1,3,4â€Oxadiazoles under Ambient Conditions. Asian Journal of Organic Chemistry, 2022, 11, .	2.7	4
9	A Mn-catalyzed remote C(sp ³)–H bond peroxidation triggered by radical trifluoromethylation of unactivated alkenes. Chemical Communications, 2021, 57, 7846-7849.	4.1	12
10	Cross-dehydrogenative coupling: a sustainable reaction for C–C bond formations. Green Chemistry, 2021, 23, 6789-6862.	9.0	130
11	Biodegradable all polyester-based multiblock copolymer elastomers with controlled properties. Polymer Chemistry, 2021, 12, 1837-1845.	3.9	12
12	Iron-catalysed radical cyclization to synthesize germanium-substituted indolo[2,1- <i>>a</i>) isoquinolin-6(5 <i>H</i>)-ones and indolin-2-ones. Chemical Communications, 2021, 57, 9276-9279.	4.1	37
13	Synthesis of isoxazoles via cyclization of \hat{l}^2 -fluoro enones with sodium azide. Tetrahedron Letters, 2021, 71, 153052.	1.4	5
14	Regioselective Synthesis of Emission Colorâ€Tunable Pyrazolo[1,5â€a]pyrimidines with î²,î²â€Difluoro Peroxides as 1,3â€Bisâ€Electrophiles. Advanced Synthesis and Catalysis, 2021, 363, 3233-3239.	4.3	9
15	Annulative π-Extension (APEX) of Indoles to Pyrido[1,2- <i>a</i>]indoles Using 4-Oxo Peroxides as C4 Units. Organic Letters, 2021, 23, 5978-5982.	4.6	6
16	Iron-Catalyzed Ring-Opening Reactions of Cyclopropanols with Alkenes and TBHP: Synthesis of 5-Oxo Peroxides. Organic Letters, 2021, 23, 7608-7612.	4.6	25
17	Three-Component Reactions of \hat{l} ±-CF ₃ Carbonyls, NaN ₃ , and Amines for the Synthesis of <i>NH</i> -1,2,3-Triazoles. Journal of Organic Chemistry, 2021, 86, 17197-17212.	3.2	20
18	Ligand-controlled regioselective and chemodivergent defluorinative functionalization of <i>gem</i> -difluorocyclopropanes with simple ketones. Chemical Science, 2021, 12, 15511-15518.	7.4	30

#	Article	IF	CITATIONS
19	Iron-catalyzed acylation-functionalization of unactivated alkenes with aldehydes. Chemical Communications, 2020, 56, 14637-14640.	4.1	22
20	Copper-catalyzed trifluoromethylthiolation-peroxidation of alkenes and allenes. Organic Chemistry Frontiers, 2020, 7, 1837-1844.	4.5	18
21	Ironâ€Catalyzed [2+2+2] Annulation of Aliphatic Bridged 1, <i>n</i> à€Enynes with Aldehydes for the Synthesis of Fused Pyrans. European Journal of Organic Chemistry, 2020, 2020, 4425-4428.	2.4	5
22	DABCOâ€Mediated [4+1] Cycloaddition of β,βâ€Dihalo Peroxides with Sodium Azide toward Isoxazoles. Asian Journal of Organic Chemistry, 2020, 9, 1018-1021.	2.7	6
23	Copperâ€Catalyzed Selective Crossâ€Couplings of Propargylic Ethers with Aryl Grignard Reagents. Asian Journal of Organic Chemistry, 2019, 8, 1834-1837.	2.7	5
24	Four-Component Reactions for the Synthesis of Perfluoroalkyl Isoxazoles. ACS Catalysis, 2019, 9, 9098-9102.	11.2	36
25	Mn-Catalyzed azidation–peroxidation of alkenes. Organic Chemistry Frontiers, 2019, 6, 632-636.	4.5	27
26	Cobalt-Catalyzed Three-Component Difluoroalkylation–Peroxidation of Alkenes. Journal of Organic Chemistry, 2019, 84, 5328-5338.	3.2	36
27	Nitration–Peroxidation of Alkenes: A Selective Approach to β-Peroxyl Nitroalkanes. Organic Letters, 2019, 21, 1480-1483.	4.6	45
28	Salicylateâ€Directed Câ^'O Bond Cleavage: Ironâ€Catalyzed Allylic Substitution with Grignard Reagents. Asian Journal of Organic Chemistry, 2018, 7, 914-917.	2.7	13
29	Copper-catalyzed three-component phosphorylation–peroxidation of alkenes. Organic Chemistry Frontiers, 2018, 5, 972-976.	4.5	30
30	Ag-catalyzed sulfonylation-peroxidation of alkenes with sulfonyl hydrazides and T-hydro. Tetrahedron Letters, 2018, 59, 3942-3945.	1.4	22
31	Fe- or co-catalyzed silylation-peroxidation of alkenes with hydrosilanes and T-hydro. Tetrahedron Letters, 2018, 59, 2604-2606.	1.4	13
32	FeCl ₃ -Catalyzed Regio-Divergent Carbosulfenylation of Unactivated Alkenes: Construction of a Medium-Sized Ring. Journal of Organic Chemistry, 2018, 83, 10985-10994.	3.2	19
33	Ironâ€Catalyzed Oxidative Cyclization of 1,6â€Enones with Aldehydes: Synthesis of Functionalized 3,4â€Dihydroâ€ <i><scp>2H</scp></i> à€pyrans. Chinese Journal of Chemistry, 2017, 35, 303-306.	4.9	13
34	Cycloalkylation of C(sp ³)-H Bond with Neighboring Carboxylic Acid as Traceless Activating Group. Journal of Organic Chemistry, 2017, 82, 2689-2702.	3.2	23
35	Total Synthesis and Structure Revision of $(\hat{A}\pm)$ -Clavilactone D Through Selective Cyclization of an $\hat{l}\pm,\hat{l}^2$ -Dicarbonyl Peroxide. Journal of Organic Chemistry, 2017, 82, 5487-5491.	3.2	20
36	Cobaltâ€Catalyzed Alkylation–Peroxidation of Alkenes with 1,3â€Dicarbonyl Compounds and Tâ€Hydro. Asian Journal of Organic Chemistry, 2017, 6, 313-321.	2.7	27

#	Article	IF	CITATIONS
37	Benzannulation of Pyrroles to 4,5â€Disubstituted Indoles through BrÃ,nstedâ€Acidâ€Promoted Rearrangement of <i>tert</i> àêButyl Peroxides. Asian Journal of Organic Chemistry, 2017, 6, 1604-1611.	2.7	8
38	Diastereoselective building up polycyclic tetrahydrofurans via tandem annulation of 1,n-enynes with aliphatic acids. Organic Chemistry Frontiers, 2017, 4, 2147-2152.	4.5	19
39	Iron-Catalyzed Radical [2 + 2 + 2] Annulation of Benzene-Linked 1,7-Enynes with Aldehydes: Fused Pyran Compounds. Organic Letters, 2016, 18, 2264-2267.	4.6	66
40	Iron-catalyzed allylic substitution reactions of allylic ethers with Grignard reagents. Tetrahedron Letters, 2016, 57, 2211-2214.	1.4	27
41	A general method for synthesis of cis-dicarbonyl epoxides through DBU/LiBr-cocatalyzed cyclization of $l\pm,\hat{l}^2$ -dicarbonyl peroxides. Tetrahedron Letters, 2016, 57, 3827-3831.	1.4	8
42	Iron-catalyzed decarbonylation initiated $[2 + 2 + m]$ annulation of benzene-linked 1,n-enynes with aliphatic aldehydes. Organic Chemistry Frontiers, 2016, 3, 1509-1513.	4.5	48
43	FeCl ₃ â€Catalyzed Ringâ€Closing Carbonyl–Olefin Metathesis. Angewandte Chemie, 2016, 128, 10566-10569.	2.0	20
44	FeCl ₃ â€Catalyzed Ringâ€Closing Carbonyl–Olefin Metathesis. Angewandte Chemie - International Edition, 2016, 55, 10410-10413.	13.8	90
45	Fe-Catalyzed Cross-Dehydrogenative Coupling Reactions. Topics in Current Chemistry, 2016, 374, 38.	5.8	74
46	Copper-catalyzed tandem trifluoromethylation–cyclization of olefinic carbonyls: synthesis of trifluoromethylated 2,3-dihydrofurans and 3,4-dihydropyrans. Organic Chemistry Frontiers, 2016, 3, 804-808.	4.5	32
47	Manganeseâ€Catalyzed Alkylâ€Heckâ€Type Reaction via Oxidative Decarbonylation of Aldehydes. Asian Journal of Organic Chemistry, 2015, 4, 622-625.	2.7	35
48	Iron-Catalyzed Convergent Radical Cyclization of Aldehydes with Two Alkenes to 3,4-Dihydropyrans. Organic Letters, 2015, 17, 4324-4327.	4.6	42
49	Hydroxysulfenylation of Electron-Deficient Alkenes through an Aerobic Copper Catalysis. Organic Letters, 2015, 17, 1180-1183.	4.6	63
50	Iron-catalyzed aerobic oxidative amidation of tertiary amines with carboxylic acids. Science China Chemistry, 2015, 58, 1310-1315.	8.2	9
51	Iron-Catalyzed Divergent Tandem Radical Annulation of Aldehydes with Olefins toward Indolines and Dihydropyrans. Journal of Organic Chemistry, 2015, 80, 12562-12571.	3.2	37
52	Iron-catalyzed alkoxycarbonylation–peroxidation of alkenes with carbazates and T-Hydro. Tetrahedron Letters, 2015, 56, 6719-6721.	1.4	36
53	Iron-Catalyzed Acylation-Oxygenation of Terminal Alkenes for the Synthesis of Dihydrofurans Bearing a Quaternary Carbon. Journal of Organic Chemistry, 2015, 80, 698-704.	3.2	73
54	Total Synthesis of (±)â€Clavilactonesâ€A, B, and Proposedâ€D through Ironâ€Catalyzed Carbonylation–Peroxidation of Olefin. Angewandte Chemie - International Edition, 2014, 53, 4164-4167.	13.8	74

#	Article	IF	Citations
55	Benzannulation of Indoles to Carbazoles and Its Applications for Syntheses of Carbazole Alkaloids. Organic Letters, 2014, 16, 5156-5159.	4.6	99
56	Iron-catalyzed/mediated oxidative transformation of C–H bonds. Organic Chemistry Frontiers, 2014, 1, 194-214.	4.5	253
57	Efficient and Selective Synthesis of α,βâ€Epoxyâ€Î³â€Butyrolactones from 2â€Peroxyâ€1,4â€Dicarbonyl Compo Chemistry - an Asian Journal, 2013, 8, 359-363.	unds. 3.3	22
58	The Rearrangement of <i>tert</i> -Butylperoxides for the Construction of Polysubstituted Furans. Organic Letters, 2013, 15, 5432-5435.	4.6	62
59	Ironâ€Catalyzed CC Bond Cleavage and CN Bond Formation. Advanced Synthesis and Catalysis, 2013, 355, 181-190.	4.3	30
60	Synthesis of α-ester–β-keto peroxides via iron-catalyzed carbonylation–peroxidation of α,β-unsaturated esters. Tetrahedron, 2012, 68, 10333-10337.	1.9	49
61	Iron-catalyzed benzylation of 1,3-dicarbonyl compounds by simple toluene derivatives. Science Bulletin, 2012, 57, 2382-2386.	1.7	37
62	Iron-Catalyzed Carbonylation-Peroxidation of Alkenes with Aldehydes and Hydroperoxides. Journal of the American Chemical Society, 2011, 133, 10756-10759.	13.7	286
63	Ironâ€Catalyzed <i>ortho</i> à€Selective Functionalization of Phenols: A Straightforward Strategy towards the 2′â€Hydroxyphenylâ€1,2â€dione Skeleton. European Journal of Organic Chemistry, 2010, 2010, 5787-5790.	2.4	28
64	Ironâ€Catalyzed CC Bond Formation by Direct Functionalization of CH Bonds Adjacent to Heteroatoms. Angewandte Chemie - International Edition, 2008, 47, 7497-7500.	13.8	291
65	Câ^'H Bond Oxidation Initiated Pummerer- and Knoevenagel-Type Reactions of Benzyl Sulfide and 1,3-Dicarbonyl Compounds. Organic Letters, 2008, 10, 803-805.	4.6	102
66	FeCl ₂ atalyzed Selective CC Bond Formation by Oxidative Activation of a Benzylic CH Bond. Angewandte Chemie - International Edition, 2007, 46, 6505-6507.	13.8	348
67	Cu-catalyzed cross-dehydrogenative coupling: A versatile strategy for C-C bond formations via the oxidative activation of sp3 C-H bonds. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 8928-8933.	7.1	555
68	Catalytic Allylic Alkylation via the Cross-Dehydrogenative-Coupling Reaction between Allylic sp3Câ^'H and Methylenic sp3Câ^'H Bonds. Journal of the American Chemical Society, 2006, 128, 56-57.	13.7	262
69	Green chemistry: The development of cross-dehydrogenative coupling (CDC) for chemical synthesis. Pure and Applied Chemistry, 2006, 78, 935-945.	1.9	233
70	Highly Efficient CuBr-Catalyzed Cross-Dehydrogenative Coupling (CDC) between Tetrahydroisoquinolines and Activated Methylene Compounds. European Journal of Organic Chemistry, 2005, 2005, 3173-3176.	2.4	173
71	Highly Efficient Copper-Catalyzed Nitro-Mannich Type Reaction:Â Cross-Dehydrogenative-Coupling between sp3Câ^'H Bond and sp3Câ^'H Bond. Journal of the American Chemical Society, 2005, 127, 3672-3673.	13.7	517
72	CuBr-Catalyzed Direct Indolation of Tetrahydroisoquinolines via Cross-Dehydrogenative Coupling between sp3Câ^'H and sp2Câ^'H Bonds. Journal of the American Chemical Society, 2005, 127, 6968-6969.	13.7	486

ZHIPING LI

#	Article	IF	CITATIONS
73	Catalytic Enantioselective Alkynylation of Prochiral sp3Câ^'H Bonds Adjacent to a Nitrogen Atom. Organic Letters, 2004, 6, 4997-4999.	4.6	356
74	CuBr-Catalyzed Efficient Alkynylation of sp3Câ^'H Bonds Adjacent to a Nitrogen Atom. Journal of the American Chemical Society, 2004, 126, 11810-11811.	13.7	623
75	Asymmetric Synthesis Based on Catalytic Activation of CH Bonds and CC Bonds. , 0, , 129-152.		0