
Shu Jian Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1430959/publications.pdf Version: 2024-02-01

SHILLIAN CHEN

#	Article	IF	CITATIONS
1	Capillary bridges between unsaturated nano-mineral particles: a molecular dynamics study. Physical Chemistry Chemical Physics, 2022, 24, 8398-8407.	1.3	0
2	Damage-tolerant material design motif derived from asymmetrical rotation. Nature Communications, 2022, 13, 1289.	5.8	3
3	Graphene oxide-reinforced thin shells for high-performance, lightweight cement composites. Composites Part B: Engineering, 2022, 235, 109796.	5.9	12
4	Revealing Microstructural Modifications of Graphene Oxide-Modified Cement via Deep Learning and Nanoporosity Mapping: Implications for Structural Materials' Performance. ACS Applied Nano Materials, 2022, 5, 7092-7102.	2.4	3
5	Direct 2D cement-nanoadditive deposition enabling carbon-neutral hydrogen from natural gas. Nano Energy, 2022, 99, 107415.	8.2	8
6	Controlling the rheological properties of cement for a submillimetre-thin shell structure. Materials and Structures/Materiaux Et Constructions, 2021, 54, 1.	1.3	3
7	Descriptor-based method combined with partition to reconstruct three-dimensional complex microstructures. Physical Review E, 2021, 104, 015316.	0.8	1
8	Graphene kirigami membrane with superior theoretical permeability and adjustable selection capability. Carbon, 2021, 181, 398-407.	5.4	8
9	Controlled growth and ordering of poorly-crystalline calcium-silicate-hydrate nanosheets. Communications Materials, 2021, 2, .	2.9	19
10	Effect of Graphene Oxide on the Pore Structure of Cement Paste: Implications for Performance Enhancement. ACS Applied Nano Materials, 2021, 4, 10623-10633.	2.4	15
11	Grid-based electron–solid interaction simulation for characterizing high-dimensional microstructures. Ultramicroscopy, 2020, 217, 113070.	0.8	1
12	Toward the Understanding of Stress-Induced Mineral Dissolution via Molecular Scale Simulations. Journal of Physical Chemistry C, 2020, 124, 19166-19173.	1.5	5
13	Highly tunable anisotropic co-deformation of black phosphorene superlattices. Nanoscale, 2020, 12, 19787-19796.	2.8	1
14	Graphene oxide in ceramic-based layered structure: Nanosheet optimization. Construction and Building Materials, 2019, 224, 266-275.	3.2	15
15	Towards microstructure-based analysis and design for seepage water in underground engineering: Effect of image characteristics. Tunnelling and Underground Space Technology, 2019, 93, 103086.	3.0	8
16	Graphene oxide-coated Poly(vinyl alcohol) fibers for enhanced fiber-reinforced cementitious composites. Composites Part B: Engineering, 2019, 174, 107010.	5.9	45
17	Dynamic increased reinforcing effect of graphene oxide on cementitious nanocomposite. Construction and Building Materials, 2019, 206, 694-702.	3.2	23
18	Transitions between nanomechanical and continuum mechanical contacts: new insights from liquid structure. Nanoscale, 2019, 11, 22954-22963.	2.8	7

Shu Jian Chen

#	Article	IF	CITATIONS
19	Influence of ultrasonication on the dispersion and enhancing effect of graphene oxide–carbon nanotube hybrid nanoreinforcement in cementitious composite. Composites Part B: Engineering, 2019, 164, 45-53.	5.9	128
20	Role of Multiwalled Carbon Nanotubes as Shear Reinforcing Nanopins in Quasi-Brittle Matrices. ACS Applied Nano Materials, 2018, 1, 1731-1740.	2.4	27
21	Improvement of mechanical properties by incorporating graphene oxide into cement mortar. Mechanics of Advanced Materials and Structures, 2018, 25, 1313-1322.	1.5	64
22	Investigation on dispersion of graphene oxide in cement composite using different surfactant treatments. Construction and Building Materials, 2018, 161, 519-527.	3.2	167
23	Exfoliation and dispersion of boron nitride nanosheets to enhance ordinary Portland cement paste. Nanoscale, 2018, 10, 1004-1014.	2.8	55
24	Snubbing effect in atomic scale friction of graphene. Composites Part B: Engineering, 2018, 136, 119-125.	5.9	3
25	Transformation of pore structure in consolidated silty clay: New insights from quantitative pore profile analysis. Construction and Building Materials, 2018, 186, 615-625.	3.2	21
26	Effects of graphene oxide on early-age hydration and electrical resistivity of Portland cement paste. Construction and Building Materials, 2017, 136, 506-514.	3.2	230
27	Effects of Nanoalumina and Graphene Oxide on Early-Age Hydration and Mechanical Properties of Cement Paste. Journal of Materials in Civil Engineering, 2017, 29, .	1.3	103
28	Methylcellulose stabilized multi-walled carbon nanotubes dispersion for sustainable cement composites. Construction and Building Materials, 2017, 146, 76-85.	3.2	47
29	Reinforcing mechanism of graphene at atomic level: Friction, crack surface adhesion and 2D geometry. Carbon, 2017, 114, 557-565.	5.4	78
30	Quantification of evaporation induced error in atom probe tomography using molecular dynamics simulation. Ultramicroscopy, 2017, 182, 28-35.	0.8	5
31	Pore shape analysis using centrifuge driven metal intrusion: Indication on porosimetry equations, hydration and packing. Construction and Building Materials, 2017, 154, 95-104.	3.2	40
32	Nano-Impact Tests with Ultra-High Strain Rate Loading Using Graphene and Ion Impact. International Journal of Applied Mechanics, 2016, 08, 1650043.	1.3	4
33	Failure of CFRP-to-steel double strap joint bonded using carbon nanotubes modified epoxy adhesive at moderately elevated temperatures. Composites Part B: Engineering, 2016, 94, 95-101.	5.9	40
34	Strain Relaxation of Monolayer WS ₂ on Plastic Substrate. Advanced Functional Materials, 2016, 26, 8707-8714.	7.8	97
35	A new scheme for analysis of pore characteristics using centrifuge driven non-toxic metal intrusion. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2016, 2, 173-182.	1.3	30
36	Agglomeration process of surfactant-dispersed carbon nanotubes in unstable dispersion: A two-stage agglomeration model and experimental evidence. Powder Technology, 2016, 301, 412-420.	2.1	37

Shu Jian Chen

#	Article	IF	CITATIONS
37	Distribution of carbon nanotubes in fresh ordinary Portland cement pastes: understanding from a two-phase perspective. RSC Advances, 2016, 6, 5745-5753.	1.7	50
38	New approach for characterisation of mechanical properties of cement paste at micrometre scale. Materials and Design, 2015, 87, 992-995.	3.3	24
39	Molecular Dynamics Simulations of Graphene Pull-Out from Calcium Silicate Hydrate. , 2015, , .		2
40	Effect of ultrasonication energy on engineering properties of carbon nanotube reinforced cement pastes. Carbon, 2015, 85, 212-220.	5.4	233
41	Optimizing the degree of carbon nanotube dispersion in a solvent for producing reinforced epoxy matrices. Powder Technology, 2015, 284, 541-550.	2.1	37
42	Predicting the influence of ultrasonication energy on the reinforcing efficiency of carbon nanotubes. Carbon, 2014, 77, 1-10.	5.4	76