Hailong Hu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/143094/publications.pdf Version: 2024-02-01

HALLONG HU

#	Article	IF	CITATIONS
1	Efficient quantum dot light-emitting diodes with ultra-homogeneous and highly ordered quantum dot monolayer. Science China Materials, 2022, 65, 757-763.	6.3	13
2	Ultrahigh-resolution quantum-dot light-emitting diodes. Nature Photonics, 2022, 16, 297-303.	31.4	97
3	Highly efficient inverted quantum dot light-emitting diodes employing sol-gel derived Li-doped ZnO as electron transport layer. Organic Electronics, 2022, 103, 106466.	2.6	12
4	Inkjet-Printed Quantum Dot Fluorescent Security Labels with Triple-Level Optical Encryption. ACS Applied Materials & Interfaces, 2021, 13, 15701-15708.	8.0	38
5	Light-Emitting Memristors for Optoelectronic Artificial Efferent Nerve. Nano Letters, 2021, 21, 6087-6094.	9.1	42
6	Quantum Dot Self-Assembly Deposition in Physically Confined Microscale Space by Using an Inkjet Printing Technique. Journal of Physical Chemistry Letters, 2021, 12, 8605-8613.	4.6	9
7	E-Synapse Based on Lead-Free Organic Halide Perovskite (CH3NH3)3Sb2Cl9 for Neuromorphic Computing. IEEE Transactions on Electron Devices, 2021, 68, 4425-4430.	3.0	4
8	Achieving Highly Efficient and Stable Quantum Dot Light-Emitting Diodes With Interface Modification. IEEE Electron Device Letters, 2020, 41, 1384-1387.	3.9	7
9	Ultrahighly Efficient White Quantum Dot Lightâ€Emitting Diodes Operating at Low Voltage. Advanced Optical Materials, 2020, 8, 2001479.	7.3	27
10	Highly efficient inkjet printed flexible organic light-emitting diodes with hybrid hole injection layer. Organic Electronics, 2020, 85, 105822.	2.6	29
11	Efficient inkjet-printed blue OLED with boosted charge transport using host doping for application in pixelated display. Optical Materials, 2020, 101, 109755.	3.6	28
12	Optoelectronic Perovskite Synapses for Neuromorphic Computing. Advanced Functional Materials, 2020, 30, 1908901.	14.9	142
13	Surface engineering towards highly efficient perovskite light-emitting diodes. Nano Energy, 2019, 65, 104029.	16.0	26
14	Highly Reliable Electronic Synapse Based on Au@Al ₂ O ₃ Core-Shell Nanoparticles for Neuromorphic Applications. IEEE Electron Device Letters, 2019, 40, 1610-1613.	3.9	7
15	Ethanol-controlled peroxidation in liquid-anode discharges. Journal Physics D: Applied Physics, 2019, 52, 425205.	2.8	5
16	Efficient Hole Injection of MoO _x -Doped Organic Layer for Printable Red Quantum Dot Light-Emitting Diodes. IEEE Electron Device Letters, 2019, 40, 1147-1150.	3.9	10
17	Boosting the performance of quantum dot light-emitting diodes with Mg and PVP Co-doped ZnO as electron transport layer. Organic Electronics, 2019, 75, 105411.	2.6	14
18	Pâ€118: Efficient Quantum Dots Lightâ€Emitting Diodes with a thiocyanate hole injection layer. Digest of Technical Papers SID International Symposium, 2019, 50, 1693-1695.	0.3	0

Hailong Hu

#	Article	IF	CITATIONS
19	Inkjet-printed unclonable quantum dot fluorescent anti-counterfeiting labels with artificial intelligence authentication. Nature Communications, 2019, 10, 2409.	12.8	293
20	Ultrathin electronic synapse having high temporal/spatial uniformity and an Al2O3/graphene quantum dots/Al2O3 sandwich structure for neuromorphic computing. NPG Asia Materials, 2019, 11, .	7.9	42
21	All-solution-processed high-performance quantum dot light emitting devices employing an inorganic thiocyanate as hole injection layer. Organic Electronics, 2019, 70, 279-285.	2.6	16
22	Highly flexible light emitting diodes based on a quantum dots-polymer composite emitting layer. Vacuum, 2019, 163, 282-286.	3.5	12
23	Fluorescent Microarrays of <i>in Situ</i> Crystallized Perovskite Nanocomposites Fabricated for Patterned Applications by Using Inkjet Printing. ACS Nano, 2019, 13, 2042-2049.	14.6	120
24	Aqueous solution-processed molybdenum oxide as an efficient hole injection layer for flexible quantum dot light emitting diodes. Thin Solid Films, 2019, 669, 387-391.	1.8	15
25	Structural reconfiguration and stress relaxation in twisted epitaxial graphene by annealing. Nanotechnology, 2019, 30, 045708.	2.6	1
26	Preparation and photoelectric properties of CsPbBr ₃ perovskite nanoplates. Chinese Science Bulletin, 2019, 64, 1478-1484.	0.7	2
27	Inkjet-printed p-type nickel oxide thin-film transistor. Applied Surface Science, 2018, 441, 295-302.	6.1	56
28	Blue quantum dot light emitting diodes with polyvinylpyrrolidone-doped electron transport layer. Organic Electronics, 2018, 63, 65-70.	2.6	28
29	All-Solution-Processed Perovskite Quantum Dots Light-Emitting Diodes Based on the Solvent Engineering Strategy. ACS Applied Materials & Interfaces, 2018, 10, 27374-27380.	8.0	40
30	Inkjet-Printed In-Ga-Zn Oxide Thin-Film Transistors with Laser Spike Annealing. Journal of Electronic Materials, 2017, 46, 4497-4502.	2.2	18
31	Improved field emission properties of CuO nanowire arrays by coating of graphene oxide layers. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2016, 34, .	1.2	9
32	Improving the field emission characteristics of tetrapod-like zinc oxide nanostructures by coating with silver nanowires. Materials Letters, 2015, 150, 93-96.	2.6	5
33	Highly enhanced field emission from CuO nanowire arrays by coating of carbon nanotube network films. Vacuum, 2015, 115, 70-74.	3.5	18
34	Field emission characteristics of graphene oxide coated CuO cathode. , 2015, , .		0
35	Field electron emission from structure-controlled one-dimensional CuO arrays synthesized by wet chemical process. Journal of Semiconductors, 2014, 35, 073003.	3.7	4
36	Monodisperse and 1D Cross-Linked Multi-branched Cu @ Ni Core–Shell Particles Synthesized by Chemical Reduction. Journal of Electronic Materials, 2014, 43, 2548-2552.	2.2	1

HAILONG HU

#	Article	IF	CITATIONS
37	Fewâ€layer epitaxial graphene with large domains on Câ€ŧerminated 6Hâ€6iC. Surface and Interface Analysis, 2012, 44, 793-796.	1.8	13
38	Ag-catalyzed synthesis of ultrafine nickel nanoparticles: A facile way to size control. Materials Letters, 2009, 63, 940-942.	2.6	7
39	Magnetic-field-assisted synthesis of Ni nanostructures: Selective control of particle shape. Chemical Physics Letters, 2009, 477, 184-188.	2.6	20
40	Selective synthesis of metallic nickel particles with control of shape via wet chemical process. Materials Letters, 2008, 62, 4339-4342.	2.6	13
41	A generic approach to the preparation of Si-based nanodome arrays. Journal Physics D: Applied Physics, 2008, 41, 175305.	2.8	1
42	Fabrication of Si nanodot arrays by plasma enhanced CVD using porous alumina templates. Materials Letters, 2006, 60, 1019-1022.	2.6	9