Shiyong Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1430626/publications.pdf

Version: 2024-02-01

31	1,081	18	31
papers	citations	h-index	g-index
35	35	35	1516
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Community-Wide Assessment of Protein-Interface Modeling Suggests Improvements to Design Methodology. Journal of Molecular Biology, 2011, 414, 289-302.	4.2	131
2	Community-wide evaluation of methods for predicting the effect of mutations on protein-protein interactions. Proteins: Structure, Function and Bioinformatics, 2013, 81, 1980-1987.	2.6	87
3	CPPred: coding potential prediction based on the global description of RNA sequence. Nucleic Acids Research, 2019, 47, e43-e43.	14.5	84
4	Nonnatural protein-protein interaction-pair design by key residues grafting. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 5330-5335.	7.1	75
5	RBPPred: predicting RNA-binding proteins from sequence using SVM. Bioinformatics, 2017, 33, 854-862.	4.1	75
6	D <scp>ockground</scp> protein–protein docking decoy set. Bioinformatics, 2008, 24, 2634-2635.	4.1	66
7	Virtual Screening of Novel Noncovalent Inhibitors for SARS-CoV 3C-like Proteinase. Journal of Chemical Information and Modeling, 2005, 45, 10-17.	5.4	65
8	A novel protocol for three-dimensional structure prediction of RNA-protein complexes. Scientific Reports, 2013, 3, 1887.	3. 3	57
9	DECK: Distance and environment-dependent, coarse-grained, knowledge-based potentials for protein-protein docking. BMC Bioinformatics, 2011, 12, 280.	2.6	47
10	Deep-RBPPred: Predicting RNA binding proteins in the proteome scale based on deep learning. Scientific Reports, 2018, 8, 15264.	3.3	42
11	A novel antiviral lncRNA, EDAL, shields a T309 O-GlcNAcylation site to promote EZH2 lysosomal degradation. Genome Biology, 2020, 21, 228.	8.8	38
12	The dataset for protein–RNA binding affinity. Protein Science, 2013, 22, 1808-1811.	7.6	32
13	ASPDock: protein-protein docking algorithm using atomic solvation parameters model. BMC Bioinformatics, 2011, 12, 36.	2.6	31
14	Template-Based Modeling of Protein-RNA Interactions. PLoS Computational Biology, 2016, 12, e1005120.	3.2	29
15	Quaternary Structure, Substrate Selectivity and Inhibitor Design for SARS 3C-Like Proteinase. Current Pharmaceutical Design, 2006, 12, 4555-4564.	1.9	28
16	A combinatorial score to distinguish biological and nonbiological protein–protein interfaces. Proteins: Structure, Function and Bioinformatics, 2006, 64, 68-78.	2.6	25
17	Novel <i>EDA</i> p.lle260Ser Mutation Linked to Non-syndromic Hypodontia. Journal of Dental Research, 2013, 92, 500-506.	5.2	21
18	Small GTPases SAR1A and SAR1B regulate the trafficking of the cardiac sodium channel Nav1.5. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 3672-3684.	3.8	20

#	Article	IF	Citations
19	RMalign: an RNA structural alignment tool based on a novel scoring function RMscore. BMC Genomics, 2019, 20, 276.	2.8	20
20	Break CDK2/Cyclin E1 Interface Allosterically with Small Peptides. PLoS ONE, 2014, 9, e109154.	2.5	19
21	P3DOCK: a protein–RNA docking webserver based on template-based and template-free docking. Bioinformatics, 2020, 36, 96-103.	4.1	15
22	Rabies viruses leader RNA interacts with host Hsc70 and inhibits virus replication. Oncotarget, 2017, 8, 43822-43837.	1.8	13
23	Dynamic property is a key determinant for protein–protein interactions. Proteins: Structure, Function and Bioinformatics, 2008, 70, 1323-1331.	2.6	11
24	PRIME-3D2D is a 3D2D model to predict binding sites of protein–RNA interaction. Communications Biology, 2020, 3, 384.	4.4	11
25	Preorientation of protein and RNA just before contacting. Journal of Biomolecular Structure and Dynamics, 2013, 31, 716-728.	3 . 5	10
26	Chemically Induced Dimerization of Human Nonpancreatic Secretory Phospholipase A2 by Bis-indole Derivatives. Journal of Medicinal Chemistry, 2008, 51, 3360-3366.	6.4	9
27	Molecular insight into coordination sites for substrates and their coupling kinetics in Na ⁺ /HCO ₃ ^{â^'} cotransporter NBCe1. Journal of Physiology, 2022, 600, 3083-3111.	2.9	5
28	Structural modeling of human cardiac sodium channel pore domain. Journal of Biomolecular Structure and Dynamics, 2018, 36, 2268-2278.	3.5	4
29	RR3DD: an RNA global structure-based RNA three-dimensional structural classification database. RNA Biology, 2021, , 1-9.	3.1	2
30	Protein-DNA complex structure modeling based on structural template. Biochemical and Biophysical Research Communications, 2021, 577, 152-157.	2.1	1
31	Two novel RNA-binding proteins identification through computational prediction and experimental validation. Genomics, 2022, 114, 149-160.	2.9	O