
Tomasz Stepkowski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1430370/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bradyrhizobium altum sp. nov., Bradyrhizobium oropedii sp. nov. and Bradyrhizobium acaciae sp. nov. from South Africa show locally restricted and pantropical nodA phylogeographic patterns. Molecular Phylogenetics and Evolution, 2022, 167, 107338.	2.7	9
2	Diversity and phylogenetic affinities of Bradyrhizobium isolates from Pampa and Atlantic Forest Biomes. Systematic and Applied Microbiology, 2021, 44, 126203.	2.8	5
3	Culture-independent assessment of the diazotrophic Bradyrhizobium communities in the Pampa and Atlantic Forest Biomes localities in southern Brazil. Systematic and Applied Microbiology, 2021, 44, 126228.	2.8	9
4	Lotus corniculatus-rhizobia symbiosis under Ni, Co and Cr stress on ultramafic soil. Plant and Soil, 2020, 451, 459-484.	3.7	20
5	Anthyllis vulneraria and Lotus corniculatus on calamine heaps form nodules with Bradyrhizobium liaoningense-related strains harboring novel in Europe symbiotic nifD haplotypes. Applied Soil Ecology, 2020, 151, 103539.	4.3	8
6	Both Alpha- and Beta-Rhizobia Occupy the Root Nodules of Vachellia karroo in South Africa. Frontiers in Microbiology, 2019, 10, 1195.	3.5	25
7	Genome-informed Bradyrhizobium taxonomy: where to from here?. Systematic and Applied Microbiology, 2019, 42, 427-439.	2.8	62
8	Minimal standards for the description of new genera and species of rhizobia and agrobacteria. International Journal of Systematic and Evolutionary Microbiology, 2019, 69, 1852-1863.	1.7	170
9	Phylogeny and Phylogeography of Rhizobial Symbionts Nodulating Legumes of the Tribe Genisteae. Genes, 2018, 9, 163.	2.4	62
10	Horizontal Transfer of Symbiosis Genes within and Between Rhizobial Genera: Occurrence and Importance. Genes, 2018, 9, 321.	2.4	124
11	Crotalarieae and Genisteae of the South African Great Escarpment are nodulated by novel Bradyrhizobium species with unique and diverse symbiotic loci. Molecular Phylogenetics and Evolution, 2016, 100, 206-218.	2.7	33
12	Distinct Bradyrhizbium communities nodulate legumes native to temperate and tropical monsoon Australia. Molecular Phylogenetics and Evolution, 2012, 63, 265-277.	2.7	49
13	Bradyrhizobium canariense and Bradyrhizobium japonicum are the two dominant rhizobium species in root nodules of lupin and serradella plants growing in Europe. Systematic and Applied Microbiology, 2011, 34, 368-375.	2.8	54
14	Crystal Structures of NodS N-Methyltransferase from Bradyrhizobium japonicum in Ligand-Free Form and as SAH Complex. Journal of Molecular Biology, 2010, 404, 874-889.	4.2	13
15	Cloning, expression, purification, crystallization and preliminary X-ray analysis of NodS N-methyltransferase from <i>Bradyrhizobium japonicum</i> WM9. Acta Crystallographica Section F: Structural Biology Communications, 2008, 64, 1149-1152.	0.7	2
16	Cowpea and peanut in southern Africa are nodulated by diverse Bradyrhizobium strains harboring nodulation genes that belong to the large pantropical clade common in Africa. Molecular Phylogenetics and Evolution, 2008, 48, 1131-1144.	2.7	111
17	Diversification of Lupine Bradyrhizobium Strains: Evidence from Nodulation Gene Trees. Applied and Environmental Microbiology, 2007, 73, 3254-3264.	3.1	120
18	High-resolution structure of NodZ fucosyltransferase involved in the biosynthesis of the nodulation factor Acta Biochimica Polonica, 2007, 54, 537-549.	0.5	25

TOMASZ STEPKOWSKI

#	Article	IF	CITATIONS
19	High-resolution structure of NodZ fucosyltransferase involved in the biosynthesis of the nodulation factor. Acta Biochimica Polonica, 2007, 54, 537-49.	0.5	10
20	Phylogeny of nodulation genes and symbiotic properties of Genista tinctoria bradyrhizobia. Archives of Microbiology, 2006, 186, 87-97.	2.2	38
21	Bayesian phylogenetic analysis reveals two-domain topology of S-adenosylhomocysteine hydrolase protein sequences. Molecular Phylogenetics and Evolution, 2005, 34, 15-28.	2.7	27
22	European Origin of Bradyrhizobium Populations Infecting Lupins and Serradella in Soils of Western Australia and South Africa. Applied and Environmental Microbiology, 2005, 71, 7041-7052.	3.1	170
23	Phylogenetic analyses of symbiotic nodulation genes support vertical and lateral gene co-transfer within the Bradyrhizobium genus. Molecular Phylogenetics and Evolution, 2004, 30, 720-732.	2.7	189
24	Cloning, purification, crystallization and preliminary crystallographic studies ofBradyrhizobium fucosyltransferaseNodZ. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 344-346.	2.5	1
25	Low sequence similarity and gene content of symbiotic clusters of Bradyrhizobium sp. WM9 (Lupinus) indicate early divergence of "lupin" lineage in the genus Bradyrhizobium. Antonie Van Leeuwenhoek, 2003, 84, 115-124.	1.7	27
26	The Variable Part of the dnaK Gene as an Alternative Marker for Phylogenetic Studies of Rhizobia and Related Alpha Proteobacteria. Systematic and Applied Microbiology, 2003, 26, 483-494.	2.8	99
27	Symbiosis of Astragalus cicer with its microsymbionts: partial nodC gene sequence, host plant specificity, and root nodule structure. Antonie Van Leeuwenhoek, 2000, 78, 63-71.	1.7	10
28	Determination of plasmid-encoded functions inRhizobium leguminosarum biovartrifolii using proteome analysis of plasmid-cured derivatives. Electrophoresis, 1998, 19, 1972-1979.	2.4	21