
Rabin Bissessur

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/143021/publications.pdf Version: 2024-02-01

PARIN RICCECCIID

#	Article	IF	CITATIONS
1	Aspirin-Based Organoiron Dendrimers as Promising Anti-Inflammatory, Anticancer, and Antimicrobial Drugs. Biomolecules, 2021, 11, 1568.	4.0	11
2	Polylactic Acid Cellulose Nanocomposite Films Comprised of Wood and Tunicate CNCs Modified with Tannic Acid and Octadecylamine. Polymers, 2021, 13, 3661.	4.5	8
3	Development of Ferromagnetic Materials Containing Co2P, Fe2P Phases from Organometallic Dendrimers Precursors. Molecules, 2021, 26, 6732.	3.8	4
4	Exfoliated MoS2–Polyaniline Nanocomposites: Synthesis and Characterization. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 206-213.	3.7	7
5	Study of plant and tunicate based nanocrystalline cellulose in hybrid polymeric nanocomposites. Cellulose, 2020, 27, 249-261.	4.9	19
6	Diatoms embedded, self-assembled carriers for dual delivery of chemotherapeutics in cancer cell lines. International Journal of Pharmaceutics, 2020, 573, 118887.	5.2	18
7	Towards the scalable isolation of cellulose nanocrystals from tunicates. Scientific Reports, 2020, 10, 19090.	3.3	39
8	Nanocomposites Based on Dendrimers and Layered Molybdenum Disulfide. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 4771-4782.	3.7	4
9	Effect of magnetic field alignment of cellulose nanocrystals in starch nanocomposites: Physicochemical and mechanical properties. Carbohydrate Polymers, 2020, 247, 116688.	10.2	31
10	Nanocomposites based on graphene analogous materials and conducting polymers: a review. Journal of Materials Science, 2020, 55, 6721-6753.	3.7	42
11	Advances in Lightâ€Emitting Dendrimers. Macromolecular Rapid Communications, 2019, 40, e1800711.	3.9	33
12	Tungsten Disulfide Polythiophene Nanocomposites. , 2019, , 53-68.		1
13	Polymeric Composites with Embedded Nanocrystalline Cellulose for the Removal of Iron(II) from Contaminated Water. Polymers, 2018, 10, 1377.	4.5	14
14	Water recycling efficacies of extremely hygroscopic, antifouling hydrogels. RSC Advances, 2018, 8, 38100-38107.	3.6	20
15	Isolation of nanocrystalline cellulose from tunicates. Journal of Environmental Chemical Engineering, 2018, 6, 4408-4412.	6.7	63
16	Tunable room-temperature soft ferromagnetism in magnetoceramics of organometallic dendrimers. Journal of Materials Chemistry C, 2017, 5, 2268-2281.	5.5	15
17	Nanocomposites Derived from Molybdenum Disulfide and an Organoiron Dendrimer. Journal of Inorganic and Organometallic Polymers and Materials, 2017, 27, 84-89.	3.7	11
18	Quaternized and Thiazoleâ€Functionalized Free Radicalâ€Generating Organometallic Dendrimers as Antimicrobial Platform against Multidrugâ€Resistant Microorganisms. Macromolecular Bioscience, 2017, 17, 1700020.	4.1	15

RABIN BISSESSUR

#	Article	IF	CITATIONS
19	Intercalation of Poly(bis-(methoxyethoxyethoxy)phosphazene) into Lithium Hectorite. , 2016, , .		0
20	Exfoliated Nanocomposites Based on Polyaniline and Tungsten Disulfide. , 2016, , .		0
21	Intercalation of Poly[oligo(ethylene glycol)-oxalate] into Lithium Hectorite. , 2016, , 681-698.		0
22	Antimicrobial and Antitumor Screening of Fluorescent 5,7â€Dihydroxyâ€4â€Propylâ€ <i>2H</i> â€Chromenâ€2â€ Derivatives with Docking Studies. ChemistrySelect, 2016, 1, 5025-5033.	One 1.5	12
23	Toward a New Family of Bifunctional Organoiron Dendrimers: Facile Synthesis, Redox, and Photophysical Fingerprints. Macromolecular Chemistry and Physics, 2015, 216, 369-379.	2.2	25
24	Nanomaterials Based on Polyanilines and MoSe2. Journal of Inorganic and Organometallic Polymers and Materials, 2014, 24, 219-225.	3.7	8
25	Unique properties of α-NaFeO2: De-intercalation of sodium via hydrolysis and the intercalation of guest molecules into the extract solution. Materials Research Bulletin, 2013, 48, 2678-2686.	5.2	41
26	Synthesis and characterization of poly(ethylene glycol amine) electrolytes and nanocomposites based on graphite. European Polymer Journal, 2012, 48, 1525-1537.	5.4	8
27	A bilayer insertion of poly(oxymethylene-oxyethylene) into vanadium pentoxide xerogel: Preparation, characterization and insertion mechanism. Solid State Ionics, 2012, 227, 1-9.	2.7	6
28	Nanocomposite materials based on chitosan and molybdenum disulfide. Journal of Materials Science, 2012, 47, 5861-5866.	3.7	21
29	Inclusion of a cobalt tetraazamacrocycle into layered molybdenum disulfide. Materials Chemistry and Physics, 2010, 122, 563-566.	4.0	1
30	In situ polymerization/intercalation of substituted anilines into iron (III) oxychloride. Solid State Ionics, 2010, 181, 933-938.	2.7	20
31	Encapsulation of polymer electrolytes into hectorite. Applied Clay Science, 2010, 47, 444-447.	5.2	9
32	Nanomaterials based on molybdenum diselenide. Materials Chemistry and Physics, 2009, 117, 335-337.	4.0	17
33	Inclusion of poly[bis(methoxyethoxyethoxy)phosphazene] into layered graphite oxide. Solid State Ionics, 2009, 180, 216-221.	2.7	8
34	Decomposition kinetics of nylon-6/graphite and nylon-6/graphite oxide composites. Thermochimica Acta, 2009, 490, 32-36.	2.7	25
35	An intercalated polyaniline–titanate nanomaterial. Synthetic Metals, 2009, 159, 637-641.	3.9	6
36	Exfoliation and reconstruction of SnS2 layers: A synthetic route for the preparation of polymer-SnS2 nanomaterials. Materials Letters, 2008, 62, 1638-1641.	2.6	16

RABIN BISSESSUR

#	Article	IF	CITATIONS
37	Synthesis and characterization of halo-substituted polyanilines/VOPO4 nanocomposites. Materials Chemistry and Physics, 2007, 106, 256-259.	4.0	13
38	Encapsulation of Polyanilines into Graphite Oxide. Langmuir, 2006, 22, 1729-1734.	3.5	123
39	Intercalation of polypyrrole into graphite oxide. Synthetic Metals, 2006, 156, 1023-1027.	3.9	133
40	Direct insertion of polypyrrole into molybdenum disulfide. Solid State Ionics, 2006, 177, 191-196.	2.7	33
41	Novel alkyl substituted polyanilines/molybdenum disulfide nanocomposites. Materials Chemistry and Physics, 2006, 99, 214-219.	4.0	60
42	Electrical characterization of conductive polymers and their intercalated nanocomposites with molybdenum disulfide. Materials Letters, 2006, 60, 248-251.	2.6	15
43	Novel intercalation compound of poly[oligo(ethylene glycol)-oxalate in molybdenum disulfide. Journal of Materials Science Letters, 2003, 22, 429-431.	0.5	5
44	Novel nanocomposite material consisting of poly[oxymethylene-(oxyethylene)] and molybdenum disulfide. Materials Chemistry and Physics, 2003, 82, 316-320.	4.0	31
45	New poly[bis-(methoxyethoxyethoxy)phosphazene]–MoS2 nanocomposite. Solid State Ionics, 2003, 158, 205-209.	2.7	10
46	Intercalation of tetraazamacrocycles into molybdenum disulfide. Journal of Materials Chemistry, 2003, 13, 44-49.	6.7	29
47	Intercalation of a pendant-arm tetraazamacrocycle into molybdenum disulfide. Chemical Communications, 2001, , 1598-1599.	4.1	23
48	Conductivity Anisotropy of Polyphosphazeneâ^'Montmorillonite Composite Electrolytes. Chemistry of Materials, 1996, 8, 1597-1599.	6.7	69
49	Toward Pillared Layered Metal Sulfides. Intercalation of the Chalcogenide Clusters Co6Q8(PR3)6(Q =) Tj ETQq1 \therefore	0,784314 6.7	rgBT /Overl
50	Nanoscale Composites Formed by Encapsulation of Polymers in MoS ₂ . From Conjugated Polymers to Plastics. Detection of Metal to Insulator Transition. Molecular Crystals and Liquid Crystals, 1994, 245, 249-254.	0.3	47
51	Inclusion of poly(aniline) into MoO3. Journal of the Chemical Society Chemical Communications, 1993, , 687.	2.0	71
52	Encapsulation of polymers into MoS2 and metal to insulator transition in metastable MoS2. Journal of the Chemical Society Chemical Communications, 1993, , 1582.	2.0	121
53	New intercalation compounds of conjugated polymers. Encapsulation of polyaniline in molybdenum disulfide. Chemistry of Materials, 1993, 5, 595-596.	6.7	175
54	Intercalation of Poly[Oligo(Ethylene Glycol) Oxalate] into Vanadium Pentoxide Xerogel: Preparation, Characterization and Conductivity Properties. , 0, , .		0

#	Article	IF	CITATIONS
55	Intercalation of C60-Fullerol into Graphite Oxide. , 0, , .		0