Scott A Holley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/143008/publications.pdf

Version: 2024-02-01

		257101	3	344852
37	2,342	24		36
papers	citations	h-index		g-index
53	53	53		1943
all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	The eye tugs and the nose follows: how interâ€tissue adhesion directs olfactory development. EMBO Reports, 2022, 23, e54396.	2.0	1
2	The roles of inter-tissue adhesion in development and morphological evolution. Journal of Cell Science, 2022, 135, .	1.2	4
3	Targeted degradation of transcription factors by TRAFTACs: TRAnscription Factor TArgeting Chimeras. Cell Chemical Biology, 2021, 28, 648-661.e5.	2.5	92
4	Integrin intra-heterodimer affinity inversely correlates with integrin activatability. Cell Reports, 2021, 35, 109230.	2.9	13
5	Mechanics as a Means of Information Propagation in Development. BioEssays, 2020, 42, 2000121.	1.2	1
6	Fibronectin is a smart adhesive that both influences and responds to the mechanics of early spinal column development. ELife, 2020, 9, .	2.8	21
7	Organization of Embryonic Morphogenesis via Mechanical Information. Developmental Cell, 2019, 49, 829-839.e5.	3.1	27
8	Patterned Disordered Cell Motion Ensures Vertebral Column Symmetry. Developmental Cell, 2017, 42, 170-180.e5.	3.1	30
9	A Sawtooth Pattern of Cadherin 2 Stability Mechanically Regulates Somite Morphogenesis. Current Biology, 2016, 26, 542-549.	1.8	25
10	Cross-Scale Integrin Regulation Organizes ECM and Tissue Topology. Developmental Cell, 2015, 34, 33-44.	3.1	73
11	Integration of cell–cell and cell–ECM adhesion in vertebrate morphogenesis. Current Opinion in Cell Biology, 2015, 36, 48-53.	2.6	47
12	The tissue mechanics of vertebrate body elongation and segmentation. Current Opinion in Genetics and Development, 2015, 32, 106-111.	1.5	41
13	Modeling the Zebrafish Segmentation Clock's Gene Regulatory Network Constrained by Expression Data Suggests Evolutionary Transitions Between Oscillating and Nonoscillating Transcription. Genetics, 2014, 197, 725-738.	1.2	9
14	Regulated tissue fluidity steers zebrafish body elongation. Development (Cambridge), 2013, 140, 573-582.	1.2	116
15	Segmental Assembly of Fibronectin Matrix Requires $\langle scp \rangle \langle i \rangle rap1b \langle i \rangle \langle scp \rangle$ and $\langle i \rangle integrin \hat{l} \pm 5 \langle i \rangle$. Developmental Dynamics, 2013, 242, 122-131.	0.8	16
16	Cell-Fibronectin Interactions Propel Vertebrate Trunk Elongation via Tissue Mechanics. Current Biology, 2013, 23, 1335-1341.	1.8	64
17	Crosstalk between Fgf and Wnt signaling in the zebrafish tailbud. Developmental Biology, 2012, 369, 298-307.	0.9	43
18	The Her7 node modulates the network topology of the zebrafish segmentation clock via sequestration of the Hes6 hub. Development (Cambridge), 2012, 139, 940-947.	1.2	39

#	Article	IF	Citations
19	Essential roles of fibronectin in the development of the left–right embryonic body plan. Developmental Biology, 2011, 354, 208-220.	0.9	42
20	Control of extracellular matrix assembly along tissue boundaries via Integrin and Eph/Ephrin signaling. Development (Cambridge), 2009, 136, 2913-2921.	1.2	109
21	Expression of the oscillating gene <i>her1</i> is directly regulated by hairy/enhancer of split, Tâ€box, and suppressor of hairless proteins in the zebrafish segmentation clock. Developmental Dynamics, 2009, 238, 2745-2759.	0.8	38
22	Balancing segmentation and laterality during vertebrate development. Seminars in Cell and Developmental Biology, 2009, 20, 472-478.	2.3	18
23	Zebrafish Whole Mount High-Resolution Double Fluorescent In Situ Hybridization. Journal of Visualized Experiments, 2009, , .	0.2	100
24	Two deltaC splice-variants have distinct signaling abilities during somitogenesis and midline patterning. Developmental Biology, 2008, 318, 126-132.	0.9	8
25	Cell cycle progression is required for zebrafish somite morphogenesis but not segmentation clock function. Development (Cambridge), 2008, 135, 2065-2070.	1.2	87
26	The genetics and embryology of zebrafish metamerism. Developmental Dynamics, 2007, 236, 1422-1449.	0.8	112
27	Priming, initiation and synchronization of the segmentation clock by deltaD and deltaC. Nature Cell Biology, 2007, 9, 523-530.	4.6	97
28	Oscillators and the emergence of tissue organization during zebrafish somitogenesis. Trends in Cell Biology, 2007, 17, 593-599.	3.6	47
29	Vertebrate Segmentation: Snail Counts the Time until Morphogenesis. Current Biology, 2006, 16, R367-R369.	1.8	4
30	Anterior-posterior differences in vertebrate segments: specification of trunk and tail somites in the zebrafish blastula. Genes and Development, 2006, 20, 1831-1837.	2.7	29
31	Integrinα5 and Delta/Notch Signaling Have Complementary Spatiotemporal Requirements during Zebrafish Somitogenesis. Developmental Cell, 2005, 8, 575-586.	3.1	135
32	beamter/deltaC and the role of Notch ligands in the zebrafish somite segmentation, hindbrain neurogenesis and hypochord differentiation. Developmental Biology, 2005, 286, 391-404.	0.9	135
33	Catching a wave: the oscillator and wavefront that create the zebrafish somite. Seminars in Cell and Developmental Biology, 2002, 13, 481-488.	2.3	44
34	<i>her1</i> and the <i>notch</i> pathway function within the oscillator mechanism that regulates zebrafish somitogenesis. Development (Cambridge), 2002, 129, 1175-1183.	1.2	229
35	her1 and the notch pathway function within the oscillator mechanism that regulates zebrafish somitogenesis. Development (Cambridge), 2002, 129, 1175-83.	1.2	80
36	Control of <i>her1</i> expression during zebrafish somitogenesis by a <i>Delta</i> dependent oscillator and an independent wave-front activity. Genes and Development, 2000, 14, 1678-1690.	2.7	296

SCOTT A HOLLEY

#	Article	IF	CITATIONS
37	Zebrafish segmentation and pair-rule patterning. Genesis, 1998, 23, 65-76.	3.1	69