
Stanley J Roux

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1429798/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	APYRASE1/2 mediate red light-induced de-etiolation growth in Arabidopsis seedlings. Plant Physiology, 2022, 189, 1728-1740.	4.8	5
2	Constitutive expression of a pea apyrase, psNTP9, increases seed yield in field-grown soybean. Scientific Reports, 2022, 12, .	3.3	1
3	Recent Advances Clarifying the Structure and Function of Plant Apyrases (Nucleoside Triphosphate) Tj ETQq1 1	0.784314 4.1	rgBT /Overlo
4	A Pan-plant Protein Complex Map Reveals Deep Conservation and Novel Assemblies. Cell, 2020, 181, 460-474.e14.	28.9	133
5	Ectopic expression of a pea apyrase enhances root system architecture and drought survival in Arabidopsis and soybean. Plant, Cell and Environment, 2019, 42, 337-353.	5.7	24
6	Extracellular ATP Signaling in Animals and Plants: Comparison and Contrast. , 2019, , 389-409.		1
7	Role of Ca2+ in Mediating Plant Responses to Extracellular ATP and ADP. International Journal of Molecular Sciences, 2018, 19, 3590.	4.1	25
8	ANN1 and ANN2 Function in Post-Phloem Sugar Transport in Root Tips to Affect Primary Root Growth. Plant Physiology, 2018, 178, 390-401.	4.8	40
9	Apyrase inhibitors enhance the ability of diverse fungicides to inhibit the growth of different plantâ€pathogenic fungi. Molecular Plant Pathology, 2017, 18, 1012-1023.	4.2	3
10	Biochemical characterization of <i>Arabidopsis</i> APYRASE family reveals their roles in regulating endomembrane NDP/NMP homoeostasis. Biochemical Journal, 2015, 472, 43-54.	3.7	18
11	A self-referencing biosensor for real-time monitoring of physiological ATP transport in plant systems. Biosensors and Bioelectronics, 2015, 74, 37-44.	10.1	28
12	Modulation of Root Skewing in Arabidopsis by Apyrases and Extracellular ATP. Plant and Cell Physiology, 2015, 56, pcv134.	3.1	29
13	New Insights in Plant Biology Gained from Research in Space. Gravitational and Space Research: Publication of the American Society for Gravitational and Space Research, 2015, 3, 3-19.	0.8	4
14	A Start Point for Extracellular Nucleotide Signaling. Molecular Plant, 2014, 7, 937-938.	8.3	7
15	Breakthroughs spotlighting roles for extracellular nucleotides and apyrases in stress responses and growth and development. Plant Science, 2014, 225, 107-116.	3.6	40
16	Apyrase Suppression Raises Extracellular ATP Levels and Induces Gene Expression and Cell Wall Changes Characteristic of Stress Responses Â. Plant Physiology, 2014, 164, 2054-2067.	4.8	65
17	RNAâ€seq analysis identifies potential modulators of gravity response in spores of <i>Ceratopteris</i> (Parkeriaceae): Evidence for modulation by calcium pumps and apyrase activity. American Journal of Botany, 2013, 100, 161-174.	1.7	31
18	Co-regulation of exine wall patterning, pollen fertility and anther dehiscence byÂArabidopsis apyrases 6 and 7. Plant Physiology and Biochemistry, 2013, 69, 62-73.	5.8	26

STANLEY J ROUX

#	Article	IF	CITATIONS
19	Current status and proposed roles for nitric oxide as a key mediator of the effects of extracellular nucleotides on plant growth. Frontiers in Plant Science, 2013, 4, 427.	3.6	15
20	Role for Apyrases in Polar Auxin Transport in Arabidopsis Â. Plant Physiology, 2012, 160, 1985-1995.	4.8	45
21	Evolutionary adaptation of plant annexins has diversified their molecular structures, interactions and functional roles. New Phytologist, 2012, 196, 695-712.	7.3	145
22	AtAPY1 and AtAPY2 Function as Golgi-Localized Nucleoside Diphosphatases in Arabidopsis thaliana. Plant and Cell Physiology, 2012, 53, 1913-1925.	3.1	30
23	Extracellular Nucleotides and Apyrases Regulate Stomatal Aperture in Arabidopsis Â. Plant Physiology, 2011, 156, 1740-1753.	4.8	82
24	Apyrases, extracellular ATP and the regulation of growth. Current Opinion in Plant Biology, 2011, 14, 700-706.	7.1	51
25	Both the stimulation and inhibition of root hair growth induced by extracellular nucleotides in Arabidopsis are mediated by nitric oxide and reactive oxygen species. Plant Molecular Biology, 2010, 74, 423-435.	3.9	74
26	Apyrase (Nucleoside Triphosphate-Diphosphohydrolase) and Extracellular Nucleotides Regulate Cotton Fiber Elongation in Cultured Ovules. Plant Physiology, 2010, 152, 1073-1083.	4.8	75
27	Intersection of two signalling pathways: extracellular nucleotides regulate pollen germination and pollen tube growth via nitric oxide. Journal of Experimental Botany, 2009, 60, 2129-2138.	4.8	85
28	The Role of Annexin 1 in Drought Stress in Arabidopsis Â. Plant Physiology, 2009, 150, 1394-1410.	4.8	220
29	Gene expression changes induced by space flight in single-cells of the fern CeratopterisÂrichardii. Planta, 2008, 229, 151-159.	3.2	65
30	PARTICIPATION OF EXTRACELLULAR NUCLEOTIDES IN THE WOUND RESPONSE OF <i>DASYCLADUS VERMICULARIS</i> AND <i>ACETABULARIA ACETABULUM</i> (DASYCLADALES, CHLOROPHYTA) ¹ . Journal of Phycology, 2008, 44, 1504-1511.	2.3	40
31	Apyrases (Nucleoside Triphosphate-Diphosphohydrolases) Play a Key Role in Growth Control in Arabidopsis. Plant Physiology, 2007, 144, 961-975.	4.8	122
32	Extracellular ATP: an unexpected role as a signaler in plants. Trends in Plant Science, 2007, 12, 522-527.	8.8	136
33	Extracellular ATP Induces the Accumulation of Superoxide via NADPH Oxidases in Arabidopsis. Plant Physiology, 2006, 140, 1222-1232.	4.8	260
34	Regulation of Plant Growth and Development by Extracellular Nucleotides. , 2006, , 221-234.		4
35	Evidence of a Novel Cell Signaling Role for Extracellular Adenosine Triphosphates and Diphosphates in Arabidopsis. Plant Cell, 2004, 16, 2652-2664.	6.6	182
36	Early development of fern gametophytes in microgravity. Advances in Space Research, 2003, 31, 215-220.	2.6	21

STANLEY J ROUX

#	Article	IF	CITATIONS
37	Multiherbicide tolerance conferred by AtPgp1 and apyrase overexpression in Arabidopsis thaliana. Nature Biotechnology, 2003, 21, 428-433.	17.5	84
38	Extracellular ATP Inhibits Root Gravitropism at Concentrations That Inhibit Polar Auxin Transport. Plant Physiology, 2003, 131, 147-154.	4.8	122
39	Disruption of Apyrases Inhibits Pollen Germination in Arabidopsis. Plant Physiology, 2003, 131, 1638-1647.	4.8	117
40	Differential Expression of Members of the Annexin Multigene Family in Arabidopsis. Plant Physiology, 2001, 126, 1072-1084.	4.8	156
41	Light Differentially Regulates Cell Division and the mRNA Abundance of Pea Nucleolin during De-Etiolation. Plant Physiology, 2001, 125, 339-350.	4.8	26
42	Antisense Expression of an Arabidopsis Ran Binding Protein Renders Transgenic Roots Hypersensitive to Auxin and Alters Auxin-Induced Root Growth and Development by Arresting Mitotic Progress. Plant Cell, 2001, 13, 2619-2630.	6.6	64
43	Identification of plant actin-binding proteins by F-actin affinity chromatography. Plant Journal, 2000, 24, 127-137.	5.7	48
44	Molecular and biochemical comparison of two different apyrases from Arabidopsis thaliana. Plant Physiology and Biochemistry, 2000, 38, 913-922.	5.8	52
45	Regulation of a recombinant pea nuclear apyrase by calmodulin and casein kinase II. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2000, 1494, 248-255.	2.4	33
46	Gravity-directed calcium current in germinating spores of Ceratopteris richardii. Planta, 2000, 210, 607-610.	3.2	55
47	A Role for Ectophosphatase in Xenobiotic Resistance. Plant Cell, 2000, 12, 519-533.	6.6	147
48	Apyrase Functions in Plant Phosphate Nutrition and Mobilizes Phosphate from Extracellular ATP1. Plant Physiology, 1999, 119, 543-552.	4.8	103
49	Influence of gravity and light on the developmental polarity of Ceratopteris richardii fern spores. Planta, 1998, 205, 553-560.	3.2	39
50	Partial purification and characterization of a type 1 protein phosphatase in purified nuclei of pea plumules. Biochemical Journal, 1996, 319, 985-991.	3.7	9
51	Red Light-Induced Appearance of Phosphotyrosine-like Epitopes on Nuclear Proteins from Pea (Pisum) Tj ETQq1 1	0,78431 2.5	l4 rgBT /Ove
52	Light-modulated abundance of an mRNA encoding a calmodulin-regulated, chromatin-associated NTPase in pea. Plant Molecular Biology, 1996, 30, 135-147.	3.9	57
53	Polar distribution of annexin-like proteins during phytochrome-mediated initiation and growth of rhizoids in the ferns Dryopteris and Anemia. Planta, 1995, 197, 376-384.	3.2	36
54	CALCIUM-REGULATED NUCLEAR ENZYMES: POTENTIAL MEDIATORS OF PHYTOCHROME-INDUCED CHANGES IN NUCLEAR METABOLISM?. Photochemistry and Photobiology, 1992, 56, 811-814.	2.5	11

STANLEY J ROUX

#	Article	IF	CITATIONS
55	Cellular mechanisms controlling lightâ€stimulated gravitropism: Role of calcium. Critical Reviews in Plant Sciences, 1987, 5, 205-236.	5.7	38
56	Regulation of enzymes in isolated plant nuclei. BioEssays, 1986, 5, 120-123.	2.5	4
57	Role of calcium ions in phytochrome responses: an update. Physiologia Plantarum, 1986, 66, 344-348.	5.2	83
58	Structure, function, and mechanism of action of Calmodulin. Critical Reviews in Plant Sciences, 1986, 4, 311-339.	5.7	78
59	Characterization of Nucleoside Triphosphatase Activity in Isolated Pea Nuclei and Its Photoreversible Regulation by Light. Plant Physiology, 1986, 81, 609-613.	4.8	35
60	A RAPID PROCEDURE FOR THE PURIFICATION OF 124 kDALTON PHYTOCHROME FROM AVENA. Photochemistry and Photobiology, 1985, 41, 229-232.	2.5	12
61	Characterization of Oat Calmodulin and Radioimmunoassay of Its Subcellular Distribution. Plant Physiology, 1984, 75, 382-386.	4.8	101
62	Inhibition of gravitropism in oat coleoptiles by the calcium chelator, ethyleneglycol-bis-(beta-aminoethyl ether)-N'-tetraacetic acid. Physiologia Plantarum, 1984, 61, 449-454.	5.2	30
63	DETERMINATION OF EXTINCTION COEFFICIENTS OF OAT PHYTOCHROME BY QUANTITATIVE AMINO ACID ANALYSES. Photochemistry and Photobiology, 1982, 35, 537-543.	2.5	24
64	Photoreversible Calcium Fluxes Induced by Phytochrome in Oat Coleoptile Cells. Plant Physiology, 1980, 65, 658-662.	4.8	71