Stanley J Roux

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1429798/publications.pdf

Version: 2024-02-01

64 3,791 35 60 papers citations h-index g-index

65 65 2593
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Extracellular ATP Induces the Accumulation of Superoxide via NADPH Oxidases in Arabidopsis. Plant Physiology, 2006, 140, 1222-1232.	4.8	260
2	The Role of Annexin 1 in Drought Stress in Arabidopsis Â. Plant Physiology, 2009, 150, 1394-1410.	4.8	220
3	Evidence of a Novel Cell Signaling Role for Extracellular Adenosine Triphosphates and Diphosphates in Arabidopsis. Plant Cell, 2004, 16, 2652-2664.	6.6	182
4	Differential Expression of Members of the Annexin Multigene Family in Arabidopsis. Plant Physiology, 2001, 126, 1072-1084.	4.8	156
5	A Role for Ectophosphatase in Xenobiotic Resistance. Plant Cell, 2000, 12, 519-533.	6.6	147
6	Evolutionary adaptation of plant annexins has diversified their molecular structures, interactions and functional roles. New Phytologist, 2012, 196, 695-712.	7.3	145
7	Extracellular ATP: an unexpected role as a signaler in plants. Trends in Plant Science, 2007, 12, 522-527.	8.8	136
8	A Pan-plant Protein Complex Map Reveals Deep Conservation and Novel Assemblies. Cell, 2020, 181, 460-474.e14.	28.9	133
9	Extracellular ATP Inhibits Root Gravitropism at Concentrations That Inhibit Polar Auxin Transport. Plant Physiology, 2003, 131, 147-154.	4.8	122
10	Apyrases (Nucleoside Triphosphate-Diphosphohydrolases) Play a Key Role in Growth Control in Arabidopsis. Plant Physiology, 2007, 144, 961-975.	4.8	122
11	Disruption of Apyrases Inhibits Pollen Germination in Arabidopsis. Plant Physiology, 2003, 131, 1638-1647.	4.8	117
12	Apyrase Functions in Plant Phosphate Nutrition and Mobilizes Phosphate from Extracellular ATP1. Plant Physiology, 1999, 119, 543-552.	4.8	103
13	Characterization of Oat Calmodulin and Radioimmunoassay of Its Subcellular Distribution. Plant Physiology, 1984, 75, 382-386.	4.8	101
14	Intersection of two signalling pathways: extracellular nucleotides regulate pollen germination and pollen tube growth via nitric oxide. Journal of Experimental Botany, 2009, 60, 2129-2138.	4.8	85
15	Multiherbicide tolerance conferred by AtPgp1 and apyrase overexpression in Arabidopsis thaliana. Nature Biotechnology, 2003, 21, 428-433.	17.5	84
16	Role of calcium ions in phytochrome responses: an update. Physiologia Plantarum, 1986, 66, 344-348.	5.2	83
17	Extracellular Nucleotides and Apyrases Regulate Stomatal Aperture in Arabidopsis Â. Plant Physiology, 2011, 156, 1740-1753.	4.8	82
18	Structure, function, and mechanism of action of Calmodulin. Critical Reviews in Plant Sciences, 1986, 4, 311-339.	5.7	78

#	Article	IF	CITATIONS
19	Apyrase (Nucleoside Triphosphate-Diphosphohydrolase) and Extracellular Nucleotides Regulate Cotton Fiber Elongation in Cultured Ovules. Plant Physiology, 2010, 152, 1073-1083.	4.8	75
20	Both the stimulation and inhibition of root hair growth induced by extracellular nucleotides in Arabidopsis are mediated by nitric oxide and reactive oxygen species. Plant Molecular Biology, 2010, 74, 423-435.	3.9	74
21	Photoreversible Calcium Fluxes Induced by Phytochrome in Oat Coleoptile Cells. Plant Physiology, 1980, 65, 658-662.	4.8	71
22	Gene expression changes induced by space flight in single-cells of the fern CeratopterisÂrichardii. Planta, 2008, 229, 151-159.	3.2	65
23	Apyrase Suppression Raises Extracellular ATP Levels and Induces Gene Expression and Cell Wall Changes Characteristic of Stress Responses Â. Plant Physiology, 2014, 164, 2054-2067.	4.8	65
24	Antisense Expression of an Arabidopsis Ran Binding Protein Renders Transgenic Roots Hypersensitive to Auxin and Alters Auxin-Induced Root Growth and Development by Arresting Mitotic Progress. Plant Cell, 2001, 13, 2619-2630.	6.6	64
25	Light-modulated abundance of an mRNA encoding a calmodulin-regulated, chromatin-associated NTPase in pea. Plant Molecular Biology, 1996, 30, 135-147.	3.9	57
26	Gravity-directed calcium current in germinating spores of Ceratopteris richardii. Planta, 2000, 210, 607-610.	3.2	55
27	Molecular and biochemical comparison of two different apyrases from Arabidopsis thaliana. Plant Physiology and Biochemistry, 2000, 38, 913-922.	5.8	52
28	Apyrases, extracellular ATP and the regulation of growth. Current Opinion in Plant Biology, 2011, 14, 700-706.	7.1	51
29	Identification of plant actin-binding proteins by F-actin affinity chromatography. Plant Journal, 2000, 24, 127-137.	5.7	48
30	Role for Apyrases in Polar Auxin Transport in Arabidopsis Â. Plant Physiology, 2012, 160, 1985-1995.	4.8	45
31	PARTICIPATION OF EXTRACELLULAR NUCLEOTIDES IN THE WOUND RESPONSE OF <i>DASYCLADUS VERMICULARIS</i> AND <i>ACETABULARIA ACETABULUM</i> (DASYCLADALES, CHLOROPHYTA) Journal of Phycology, 2008, 44, 1504-1511.	2.3	40
32	Breakthroughs spotlighting roles for extracellular nucleotides and apyrases in stress responses and growth and development. Plant Science, 2014, 225, 107-116.	3.6	40
33	ANN1 and ANN2 Function in Post-Phloem Sugar Transport in Root Tips to Affect Primary Root Growth. Plant Physiology, 2018, 178, 390-401.	4.8	40
34	Influence of gravity and light on the developmental polarity of Ceratopteris richardii fern spores. Planta, 1998, 205, 553-560.	3.2	39
35	Cellular mechanisms controlling lightâ€stimulated gravitropism: Role of calcium. Critical Reviews in Plant Sciences, 1987, 5, 205-236.	5.7	38
36	Polar distribution of annexin-like proteins during phytochrome-mediated initiation and growth of rhizoids in the ferns Dryopteris and Anemia. Planta, 1995, 197, 376-384.	3.2	36

#	Article	IF	CITATIONS
37	Characterization of Nucleoside Triphosphatase Activity in Isolated Pea Nuclei and Its Photoreversible Regulation by Light. Plant Physiology, 1986, 81, 609-613.	4.8	35
38	Regulation of a recombinant pea nuclear apyrase by calmodulin and casein kinase II. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2000, 1494, 248-255.	2.4	33
39	RNAâ€seq analysis identifies potential modulators of gravity response in spores of <i>Ceratopteris</i> (Parkeriaceae): Evidence for modulation by calcium pumps and apyrase activity. American Journal of Botany, 2013, 100, 161-174.	1.7	31
40	Inhibition of gravitropism in oat coleoptiles by the calcium chelator, ethyleneglycol-bis-(beta-aminoethyl ether)-N'-tetraacetic acid. Physiologia Plantarum, 1984, 61, 449-454.	5. 2	30
41	AtAPY1 and AtAPY2 Function as Golgi-Localized Nucleoside Diphosphatases in Arabidopsis thaliana. Plant and Cell Physiology, 2012, 53, 1913-1925.	3.1	30
42	Modulation of Root Skewing in Arabidopsis by Apyrases and Extracellular ATP. Plant and Cell Physiology, 2015, 56, pcv134.	3.1	29
43	A self-referencing biosensor for real-time monitoring of physiological ATP transport in plant systems. Biosensors and Bioelectronics, 2015, 74, 37-44.	10.1	28
44	Light Differentially Regulates Cell Division and the mRNA Abundance of Pea Nucleolin during De-Etiolation. Plant Physiology, 2001, 125, 339-350.	4.8	26
45	Co-regulation of exine wall patterning, pollen fertility and anther dehiscence byÂArabidopsis apyrases 6 and 7. Plant Physiology and Biochemistry, 2013, 69, 62-73.	5. 8	26
46	Role of Ca2+ in Mediating Plant Responses to Extracellular ATP and ADP. International Journal of Molecular Sciences, 2018, 19, 3590.	4.1	25
47	DETERMINATION OF EXTINCTION COEFFICIENTS OF OAT PHYTOCHROME BY QUANTITATIVE AMINO ACID ANALYSES. Photochemistry and Photobiology, 1982, 35, 537-543.	2.5	24
48	Ectopic expression of a pea apyrase enhances root system architecture and drought survival in Arabidopsis and soybean. Plant, Cell and Environment, 2019, 42, 337-353.	5.7	24
49	Early development of fern gametophytes in microgravity. Advances in Space Research, 2003, 31, 215-220.	2.6	21
50	Biochemical characterization of <i>Arabidopsis</i> APYRASE family reveals their roles in regulating endomembrane NDP/NMP homoeostasis. Biochemical Journal, 2015, 472, 43-54.	3.7	18
51	Current status and proposed roles for nitric oxide as a key mediator of the effects of extracellular nucleotides on plant growth. Frontiers in Plant Science, 2013, 4, 427.	3.6	15
52	Recent Advances Clarifying the Structure and Function of Plant Apyrases (Nucleoside Triphosphate) Tj ETQq0 0 0	rgBT /Ove	rlock 10 Tf 5
53	A RAPID PROCEDURE FOR THE PURIFICATION OF 124 kDALTON PHYTOCHROME FROM AVENA. Photochemistry and Photobiology, 1985, 41, 229-232.	2.5	12
54	CALCIUM-REGULATED NUCLEAR ENZYMES: POTENTIAL MEDIATORS OF PHYTOCHROME-INDUCED CHANGES IN NUCLEAR METABOLISM?. Photochemistry and Photobiology, 1992, 56, 811-814.	2.5	11

#	Article	IF	CITATIONS
55	Partial purification and characterization of a type 1 protein phosphatase in purified nuclei of pea plumules. Biochemical Journal, 1996, 319, 985-991.	3.7	9
56	Red Light-Induced Appearance of Phosphotyrosine-like Epitopes on Nuclear Proteins from Pea (Pisum) Tj ETQq0	O 0 ₂ .gBT /0	Overlock 10 T
57	A Start Point for Extracellular Nucleotide Signaling. Molecular Plant, 2014, 7, 937-938.	8.3	7
58	APYRASE1/2 mediate red light-induced de-etiolation growth in Arabidopsis seedlings. Plant Physiology, 2022, 189, 1728-1740.	4.8	5
59	Regulation of enzymes in isolated plant nuclei. BioEssays, 1986, 5, 120-123.	2.5	4
60	Regulation of Plant Growth and Development by Extracellular Nucleotides., 2006,, 221-234.		4
61	New Insights in Plant Biology Gained from Research in Space. Gravitational and Space Research: Publication of the American Society for Gravitational and Space Research, 2015, 3, 3-19.	0.8	4
62	Apyrase inhibitors enhance the ability of diverse fungicides to inhibit the growth of different plantâ€pathogenic fungi. Molecular Plant Pathology, 2017, 18, 1012-1023.	4.2	3
63	Extracellular ATP Signaling in Animals and Plants: Comparison and Contrast. , 2019, , 389-409.		1
64	Constitutive expression of a pea apyrase, psNTP9, increases seed yield in field-grown soybean. Scientific Reports, 2022, 12, .	3.3	1