Giorgio Scita

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1429524/publications.pdf

Version: 2024-02-01

22153 28297 12,076 148 59 105 citations g-index h-index papers 173 173 173 13123 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	PillarX: A Microfluidic Device to Profile Circulating Tumor Cell Clusters Based on Geometry, Deformability, and Epithelial State. Small, 2022, 18, e2106097.	10.0	17
2	Non-invasive measurement of nuclear relative stiffness from quantitative analysis of microscopy data. European Physical Journal E, 2022, 45, .	1.6	2
3	Disentangling collective motion and local rearrangements in 2D and 3D cell assemblies. Soft Matter, 2021, 17, 3550-3559.	2.7	12
4	Endocytosis in the context-dependent regulation of individual and collective cell properties. Nature Reviews Molecular Cell Biology, 2021, 22, 625-643.	37.0	59
5	Compromised nuclear envelope integrity drives TREX1-dependent DNA damage and tumor cell invasion. Cell, 2021, 184, 5230-5246.e22.	28.9	109
6	Cargo-specific recruitment in clathrin- and dynamin-independent endocytosis. Nature Cell Biology, 2021, 23, 1073-1084.	10.3	34
7	ATR is essential for preservation of cell mechanics and nuclear integrity during interstitial migration. Nature Communications, 2020, 11, 4828.	12.8	60
8	Complementary mesoscale dynamics of spectrin and acto-myosin shape membrane territories during mechanoresponse. Nature Communications, 2020, 11, 5108.	12.8	20
9	IRSp53 controls plasma membrane shape and polarized transport at the nascent lumen in epithelial tubules. Nature Communications, 2020, 11, 3516.	12.8	22
10	A self-sustaining endocytic-based loop promotes breast cancer plasticity leading to aggressiveness and pro-metastatic behavior. Nature Communications, 2020, 11, 3020.	12.8	17
11	Modelling cancer cell budding in-vitro as a self-organised, non-equilibrium growth process. Journal of Theoretical Biology, 2020, 492, 110203.	1.7	6
12	Inhibition of Cyclinâ€Dependent Kinase 5: A Strategy to Improve Sorafenib Response in Hepatocellular Carcinoma Therapy. Hepatology, 2019, 69, 376-393.	7.3	38
13	Unjamming overcomes kinetic and proliferation arrest in terminally differentiated cells and promotes collective motility of carcinoma. Nature Materials, 2019, 18, 1252-1263.	27. 5	117
14	Is cell migration a selectable trait in the natural evolution of cancer development?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180224.	4.0	4
15	Collagen Prolyl Hydroxylation–Dependent Metabolic Perturbation Governs Epigenetic Remodeling and Mesenchymal Transition in Pluripotent and Cancer Cells. Cancer Research, 2019, 79, 3235-3250.	0.9	35
16	Local actin nucleation tunes centrosomal microtubule nucleation during passage throughÂmitosis. EMBO Journal, 2019, 38, .	7.8	48
17	Sustained Secretion of the Antimicrobial Peptide S100A7 Is Dependent on the Downregulation of Caspase-8. Cell Reports, 2019, 29, 2546-2555.e4.	6.4	19
18	Co-optation of Tandem DNA Repeats for the Maintenance of Mesenchymal Identity. Cell, 2018, 173, 1150-1164.e14.	28.9	30

#	Article	IF	CITATIONS
19	A RAB35-p85/PI3K axis controls oscillatory apical protrusions required for efficient chemotactic migration. Nature Communications, 2018, 9, 1475.	12.8	23
20	Flocking transitions in confluent tissues. Soft Matter, 2018, 14, 3471-3477.	2.7	114
21	From jamming to collective cell migration through a boundary induced transition. Soft Matter, 2018, 14, 3774-3782.	2.7	32
22	The †endocytic matrix reloaded' and its impact on the plasticity of migratory strategies. Current Opinion in Cell Biology, 2018, 54, 9-17.	5.4	13
23	Harnessing membrane trafficking to promote cancer spreading and invasion: The case of RAB2A. Small GTPases, 2018, 9, 304-309.	1.6	11
24	Phosphorylation of SOS1 on tyrosine 1196 promotes its RAC GEF activity and contributes to BCR-ABL leukemogenesis. Leukemia, 2018, 32, 820-827.	7.2	22
25	Tracking-Free Determination of Single-Cell Displacements and Division Rates in Confluent Monolayers. Frontiers in Physics, 2018, 6, .	2.1	19
26	Frustration-induced phases in migrating cell clusters. Science Advances, 2018, 4, eaar8483.	10.3	32
27	A NUMB–EFA6B–ARF6 recycling route controls apically restricted cell protrusions and mesenchymal motility. Journal of Cell Biology, 2018, 217, 3161-3182.	5. 2	18
28	Small GTPases and BAR domain proteins regulate branched actin polymerisation for clathrin and dynamin-independent endocytosis. Nature Communications, 2018, 9, 1835.	12.8	74
29	Eps8 (Epidermal Growth Factor Receptor Pathway Substrate 8). , 2018, , 1604-1617.		0
30	Endocytic reawakening of motility in jammed epithelia. Nature Materials, 2017, 16, 587-596.	27.5	207
31	Rab2 promotes autophagic and endocytic lysosomal degradation. Journal of Cell Biology, 2017, 216, 1937-1947.	5. 2	98
32	Proâ€migratory and TGFâ€Î²â€activating functions of αvβ6 integrin in pancreatic cancer are differentially regulated via an Eps8â€dependent GTPase switch. Journal of Pathology, 2017, 243, 37-50.	4.5	27
33	SOS1, ARHGEF1, and DOCK2 rho-GEFs Mediate JAK-Dependent LFA-1 Activation by Chemokines. Journal of Immunology, 2017, 198, 708-717.	0.8	21
34	Giant fluctuations and structural effects in a flocking epithelium. Journal Physics D: Applied Physics, 2017, 50, 384003.	2.8	37
35	Modulation of RAB5A early endosome trafficking in response to KRas mediated macropinocytic fluxes in pancreatic cancer cells. Biochemical and Biophysical Research Communications, 2017, 493, 528-533.	2.1	6
36	Time to tackle the incumbency advantage in science. EMBO Reports, 2016, 17, 1254-1256.	4. 5	6

#	Article	IF	Citations
37	Differential identity of Filopodia and Tunneling Nanotubes revealed by the opposite functions of actin regulatory complexes. Scientific Reports, 2016, 6, 39632.	3.3	93
38	Direct interaction between Exocyst and Wave complexes promotes cell protrusions and motility. Journal of Cell Science, 2016, 129, 3756-3769.	2.0	18
39	Bursts of activity in collective cell migration. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11408-11413.	7.1	51
40	RAB2A controls MT1â€MMP endocytic and E adherin polarized Golgi trafficking to promote invasive breast cancer programs. EMBO Reports, 2016, 17, 1061-1080.	4.5	72
41	Increasing both the public health potential of basic research and the scientist satisfaction. An international survey of bio-scientists. F1000Research, 2016, 5, 56.	1.6	4
42	Increasing the public health potential of basic research and the scientist satisfaction. An international survey of bioscientists. F1000Research, 2016, 5, 56.	1.6	4
43	The actin-binding protein EPS8 binds VE-cadherin and modulates YAP localization and signaling. Journal of General Physiology, 2016, 147, 1472OIA9.	1.9	0
44	Epithelial-to-Mesenchymal Plasticity Harnesses Endocytic Circuitries. Frontiers in Oncology, 2015, 5, 45.	2.8	43
45	The actin-binding protein EPS8 binds VE-cadherin and modulates YAP localization and signaling. Journal of Cell Biology, 2015, 211, 1177-1192.	5.2	62
46	Nuclear and Cellular Plasticity: Nuclear RAC1 Takes Center Stage. Developmental Cell, 2015, 32, 261-263.	7.0	4
47	Collective Cell Motility Promotes Chemotactic Prowess and Resistance to Chemorepulsion. Current Biology, 2015, 25, 242-250.	3.9	126
48	RABGTPases in MT1-MMP trafficking and cell invasion: Physiology versus pathology. Small GTPases, 2015, 6, 145-152.	1.6	22
49	Mechanism of IRSp53 inhibition and combinatorial activation by Cdc42 and downstream effectors. Nature Structural and Molecular Biology, 2014, 21, 413-422.	8.2	73
50	The CDC42-Interacting Protein 4 Controls Epithelial Cell Cohesion and Tumor Dissemination. Developmental Cell, 2014, 30, 553-568.	7.0	40
51	ATR Mediates a Checkpoint at the Nuclear Envelope in Response to Mechanical Stress. Cell, 2014, 158, 633-646.	28.9	179
52	A RAB5/RAB4 recycling circuitry induces a proteolytic invasive program and promotes tumor dissemination. Journal of Cell Biology, 2014, 206, 307-328.	5.2	114
53	L-Proline Induces a Mesenchymal-like Invasive Program in Embryonic Stem Cells by Remodeling H3K9 and H3K36 Methylation. Stem Cell Reports, 2013, 1, 307-321.	4.8	80
54	CDC42 switches IRSp53 from inhibition of actin growth to elongation by clustering of VASP. EMBO Journal, 2013, 32, 2735-2750.	7.8	116

#	Article	IF	Citations
55	SCFFbxw5 mediates transient degradation of actin remodeller Eps8 to allow proper mitotic progression. Nature Cell Biology, 2013, 15, 179-188.	10.3	32
56	The GTPase-Activating Protein RN-tre Controls Focal Adhesion Turnover and Cell Migration. Current Biology, 2013, 23, 2355-2364.	3.9	42
57	Membrane and actin dynamics interplay at lamellipodia leading edge. Current Opinion in Cell Biology, 2013, 25, 565-573.	5.4	98
58	Eps8 controls dendritic spine density and synaptic plasticity through its actin-capping activity. EMBO Journal, 2013, 32, 1730-1744.	7.8	54
59	CIP4 Controls CCL19-Driven Cell Steering and Chemotaxis in Chronic Lymphocytic Leukemia. Cancer Research, 2013, 73, 3412-3424.	0.9	17
60	Endocytosis in the Spatial Control of Polarised Cell Functions. , 2013, , 75-94.		0
61	The role of the Rho GTPases in lens placode invagination. FASEB Journal, 2013, 27, 14.1.	0.5	0
62	LIN7 regulates the filopodia and neurite promoting activity of IRSp53. Journal of Cell Science, 2012, 125, 4543-54.	2.0	20
63	LIN7-IRSp53: A novel pathway for filopodia and neurite formation?. Communicative and Integrative Biology, 2012, 5, 631-633.	1.4	2
64	The V-ATPase-Inhibitor Archazolid Abrogates Tumor Metastasis via Inhibition of Endocytic Activation of the Rho-GTPase Rac1. Cancer Research, 2012, 72, 5976-5987.	0.9	94
65	Endocytosis and Signaling: Cell Logistics Shape the Eukaryotic Cell Plan. Physiological Reviews, 2012, 92, 273-366.	28.8	278
66	The Signaling Adaptor Eps8 Is an Essential Actin Capping Protein for Dendritic Cell Migration. Immunity, 2011, 35, 388-399.	14.3	43
67	From filopodia to synapses: the role of actinâ€capping and antiâ€capping proteins. European Journal of Neuroscience, 2011, 34, 1655-1662.	2.6	22
68	Regulation of Stereocilia Length by Myosin XVa and Whirlin Depends on the Actin-Regulatory Protein Eps8. Current Biology, 2011, 21, 167-172.	3.9	171
69	Secretory and endo/exocytic trafficking in invadopodia formation: The MT1-MMP paradigm. European Journal of Cell Biology, 2011, 90, 108-114.	3. 6	54
70	The catalytic class IA PI3K isoforms play divergent roles in breast cancer cell migration. Cellular Signalling, 2011, 23, 529-541.	3.6	10
71	The Eps8/IRSp53/VASP Network Differentially Controls Actin Capping and Bundling in Filopodia Formation. PLoS Computational Biology, 2011, 7, e1002088.	3.2	56
72	Propagating Cell-Membrane Waves Driven by Curved Activators of Actin Polymerization. PLoS ONE, 2011, 6, e18635.	2.5	62

#	Article	IF	Citations
73	Understanding biological dynamics: following cells and molecules to track functions and mechanisms. European Biophysics Journal, 2010, 39, 947-957.	2.2	3
74	Eps8 is recruited to lysosomes and subjected to chaperone-mediated autophagy in cancer cells. Experimental Cell Research, 2010, 316, 1914-1924.	2.6	40
75	The endocytic matrix. Nature, 2010, 463, 464-473.	27.8	423
76	Bidirectional Crosstalk between Actin Dynamics and Endocytosis. , 2010, , 2571-2581.		0
77	Molecular Basis for the Dual Function of Eps8 on Actin Dynamics: Bundling and Capping. PLoS Biology, 2010, 8, e1000387.	5.6	91
78	Loss of the Actin Remodeler Eps8 Causes Intestinal Defects and Improved Metabolic Status in Mice. PLoS ONE, 2010, 5, e9468.	2.5	50
79	Endocytic Control of Actin-based Motility. , 2010, , 59-84.		0
80	The Insulin Receptor Substrate of 53 kDa (IRSp53) Limits Hippocampal Synaptic Plasticity. Journal of Biological Chemistry, 2009, 284, 9225-9236.	3.4	78
81	Eps8 Regulates Axonal Filopodia in Hippocampal Neurons in Response to Brain-Derived Neurotrophic Factor (BDNF). PLoS Biology, 2009, 7, e1000138.	5.6	93
82	Requirements for F-BAR Proteins TOCA-1 and TOCA-2 in Actin Dynamics and Membrane Trafficking during Caenorhabditis elegans Oocyte Growth and Embryonic Epidermal Morphogenesis. PLoS Genetics, 2009, 5, e1000675.	3.5	58
83	Induction of <i>HoxB</i> Transcription by Retinoic Acid Requires Actin Polymerization. Molecular Biology of the Cell, 2009, 20, 3543-3551.	2.1	46
84	Cdc42- and IRSp53-dependent contractile filopodia tether presumptive lens and retina to coordinate epithelial invagination. Development (Cambridge), 2009, 136, 3657-3667.	2.5	82
85	IRSp53 Links the Enterohemorrhagic E. coli Effectors Tir and EspFU for Actin Pedestal Formation. Cell Host and Microbe, 2009, 5, 244-258.	11.0	91
86	Endocytosis and spatial restriction of cell signaling. Molecular Oncology, 2009, 3, 280-296.	4.6	53
87	F-BAR-containing adaptor CIP4 localizes to early endosomes and regulates Epidermal Growth Factor Receptor trafficking and downregulation. Cellular Signalling, 2009, 21, 1686-1697.	3.6	39
88	Coordination of Membrane and Actin Cytoskeleton Dynamics during Filopodia Protrusion. PLoS ONE, 2009, 4, e5678.	2.5	92
89	Cytoskeletal Regulation: Coordinating Actin and Microtubule Dynamics in Membrane Trafficking. Current Biology, 2008, 18, R873-R875.	3.9	17
90	IRSp53: crossing the road of membrane and actin dynamics in the formation of membrane protrusions. Trends in Cell Biology, 2008, 18, 52-60.	7.9	233

#	Article	IF	Citations
91	Endocytic Trafficking of Rac Is Required for the Spatial Restriction of Signaling in Cell Migration. Cell, 2008, 134, 135-147.	28.9	392
92	The Primate-specific Protein TBC1D3 Is Required for Optimal Macropinocytosis in a Novel ARF6-dependent Pathway. Molecular Biology of the Cell, 2008, 19, 1304-1316.	2.1	47
93	Roles of Arp2/3 complex and mDia2 in actinâ€based protrusions. FASEB Journal, 2008, 22, 1029.12.	0.5	0
94	Novel Roles of Formin mDia2 in Lamellipodia and Filopodia Formation in Motile Cells. PLoS Biology, 2007, 5, e317.	5.6	304
95	Cdc42 and Phosphoinositide 3-Kinase Drive Rac-Mediated Actin Polymerization Downstream of c-Met in Distinct and Common Pathways. Molecular and Cellular Biology, 2007, 27, 6615-6628.	2.3	47
96	Wasp and WAVE Family Proteins., 2007,, 83-96.		1
97	Increased Ethanol Resistance and Consumption in Eps8 Knockout Mice Correlates with Altered Actin Dynamics. Cell, 2006, 127, 213-226.	28.9	120
98	Regulation of cell shape by Cdc42 is mediated by the synergic actin-bundling activity of the Eps8–IRSp53 complex. Nature Cell Biology, 2006, 8, 1337-1347.	10.3	230
99	Protein complexes regulating Arp2/3-mediated actin assembly. Current Opinion in Cell Biology, 2006, 18, 4-10.	5.4	230
100	Palladin binds to Eps8 and enhances the formation of dorsal ruffles and podosomes in vascular smooth muscle cells. Journal of Cell Science, 2006, 119, 3316-3324.	2.0	90
101	Sos-mediated activation of rac1 by p66shc. Journal of Cell Biology, 2006, 172, 817-822.	5.2	83
102	Actin turnover–dependent fast dissociation of capping protein in the dendritic nucleation actin network: evidence of frequent filament severing. Journal of Cell Biology, 2006, 175, 947-955.	5.2	121
103	Phosphoinositide 3-Kinase $\text{C2}\hat{\text{I}}^2$ Regulates Cytoskeletal Organization and Cell Migration via Rac-dependent Mechanisms. Molecular Biology of the Cell, 2006, 17, 3729-3744.	2.1	78
104	Abi1 regulates the activity of N-WASP and WAVE in distinct actin-based processes. Nature Cell Biology, 2005, 7, 969-976.	10.3	201
105	Actin polymerization machinery: the finish line of signaling networks, the starting point of cellular movement. Cellular and Molecular Life Sciences, 2005, 62, 955-970.	5.4	138
106	WAVE2 Signaling Mediates Invasion of Polarized Epithelial Cells by Salmonella typhimurium. Journal of Biological Chemistry, 2005, 280, 29849-29855.	3.4	51
107	WASP-related proteins, Abi1 and Ena/VASP are required for Listeria invasion induced by the Met receptor. Journal of Cell Science, 2005, 118, 1537-1547.	2.0	94
108	The eps8 Family of Proteins Links Growth Factor Stimulation to Actin Reorganization Generating Functional Redundancy in the Ras/Rac Pathway. Molecular Biology of the Cell, 2004, 15, 91-98.	2.1	120

#	Article	IF	CITATIONS
109	Abl-dependent tyrosine phosphorylation of Sos-1 mediates growth-factor-induced Rac activation. Nature Cell Biology, 2004, 6, 268-274.	10.3	119
110	Abi1 is essential for the formation and activation of a WAVE2 signalling complex. Nature Cell Biology, 2004, 6, 319-327.	10.3	364
111	A novel actin barbed-end-capping activity in EPS-8 regulates apical morphogenesis in intestinal cells of Caenorhabditis elegans. Nature Cell Biology, 2004, 6, 1173-1179.	10.3	109
112	Eps8 controls actin-based motility by capping the barbed ends of actin filaments. Nature Cell Biology, 2004, 6, 1180-1188.	10.3	197
113	Sra-1 and Nap1 link Rac to actin assembly driving lamellipodia formation. EMBO Journal, 2004, 23, 749-759.	7.8	359
114	Rab5 is a signalling GTPase involved in actin remodelling by receptor tyrosine kinases. Nature, 2004, 429, 309-314.	27.8	262
115	Regulation of actin dynamics by WASP and WAVE family proteins. Trends in Cell Biology, 2004, 14, 303-311.	7.9	265
116	In silico analysis of the EPS8 gene family: genomic organization, expression profile, and protein structure. Genomics, 2003, 81, 234-244.	2.9	38
117	Phosphoinositide 3-kinase activates Rac by entering in a complex with Eps8, Abi1, and Sos-1. Journal of Cell Biology, 2003, 160, 17-23.	5.2	231
118	Endocytosis and Cytoskeleton. , 2003, , 411-418.		0
119	Mechanisms through which Sos-1 coordinates the activation of Ras and Rac. Journal of Cell Biology, 2002, 156, 125-136.	5.2	166
120	Vaccination of Metastatic Melanoma Patients With Autologous Tumor-Derived Heat Shock Protein gp96-Peptide Complexes: Clinical and Immunologic Findings. Journal of Clinical Oncology, 2002, 20, 4169-4180.	1.6	361
121	Eps8 in the midst of GTPases. International Journal of Biochemistry and Cell Biology, 2002, 34, 1178-1183.	2.8	88
122	Pathways Linking Endocytosis and Actin Cytoskeleton in Mammalian Cells. Experimental Cell Research, 2001, 271, 45-56.	2.6	51
123	An effector region in Eps8 is responsible for the activation of the Rac-specific GEF activity of Sos-1 and for the proper localization of the Rac-based actin–polymerizing machine. Journal of Cell Biology, 2001, 154, 1031-1044.	5.2	121
124	The Eps8 protein coordinates EGF receptor signalling through Rac and trafficking through Rab5. Nature, 2000, 408, 374-377.	27.8	271
125	NEW EMBO MEMBERS' REVIEW: Signaling from Ras to Rac and beyond: not just a matter of GEFs. EMBO Journal, 2000, 19, 2393-2398.	7.8	186
126	EPS8 and E3B1 transduce signals from Ras to Rac. Nature, 1999, 401, 290-293.	27.8	312

#	Article	IF	Citations
127	Eps8 and E3b1 mediate transduction of signals from Ras to Rac. European Journal of Cancer, 1999, 35, S132.	2.8	0
128	Somatostatin inhibits PDGF-stimulated Ras activation in human neuroblastoma cells. FEBS Letters, 1999, 459, 64-68.	2.8	19
129	The SH3 domain of Eps8 exists as a novel intertwined dimer. Nature Structural Biology, 1997, 4, 739-743.	9.7	89
130	Retinoic acid downregulates growth, fibronectin and RARÎ \pm in 3T3 cells:Ha-ras blocks this response and RA metabolism. Journal of Cellular Physiology, 1997, 173, 297-300.	4.1	8
131	Retinoid X receptor-selective ligands produce malformations in Xenopus embryos Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 1803-1807.	7.1	46
132	Retinoic Acid Down-regulation of Fibronectin and Retinoic Acid Receptor α Proteins in NIH-3T3 Cells. Journal of Biological Chemistry, 1996, 271, 6502-6508.	3.4	32
133	Loss of retinoic acid receptors in mouse skin and skin tumors is associated with activation of the ras(Ha) oncogene and high risk for premalignant progression. Cancer Research, 1996, 56, 4942-9.	0.9	39
134	Retinoic acid and beta-carotene inhibit fibronectin synthesis and release by fibroblasts; antagonism to phorbol ester. Carcinogenesis, 1994, 15, 1043-1048.	2.8	9
135	The effect of sphingosine on the release of fibronectin from human lung fibroblasts. Biochimica Et Biophysica Acta - Molecular Cell Research, 1994, 1223, 29-35.	4.1	3
136	[3] Uptake and cleavage of \hat{l}^2 -carotene by cultures of rat small intestinal cells and human lung fibroblasts. Methods in Enzymology, 1993, 214, 21-32.	1.0	12
137	Retinol bound to cellular retinol-binding protein is a substrate for cytosolic retinoic acid synthesis. Journal of Biological Chemistry, 1993, 268, 27133-42.	3.4	45
138	[16] Stability of \hat{l}^2 -carotene under different laboratory conditions. Methods in Enzymology, 1992, 213, 175-185.	1.0	30
139	Ultraviolet Light-Induced Generation of Vitamin E Radicals and Their Recycling. a Possible Photosensitizing Effect of Vitamin E IN Skin. Free Radical Research Communications, 1992, 16, 51-64.	1.8	105
140	The effect of sphingosine and phorbol ester on the signal transduction enzymes and fibronectin release in cell culture. Biochimica Et Biophysica Acta - Molecular Cell Research, 1992, 1135, 295-300.	4.1	9
141	[44] Antioxidant radical-scavenging activity of carotenoids and retinoids compared to α-tocopherol. Methods in Enzymology, 1992, 213, 460-472.	1.0	78
142	Uptake and cleavage of \hat{l}^2 -carotene by cultures of rat small intestinal cells and human lung fibroblasts. Journal of Nutritional Biochemistry, 1992, 3, 118-123.	4.2	44
143	The stability of \hat{l}^2 -carotene under different laboratory conditions. Journal of Nutritional Biochemistry, 1992, 3, 124-128.	4.2	28
144	Recycling of vitamin E in human low density lipoproteins Journal of Lipid Research, 1992, 33, 385-397.	4.2	277

#	ARTICLE	IF	CITATION
145	Recycling of vitamin E in human low density lipoproteins. Journal of Lipid Research, 1992, 33, 385-97.	4.2	229
146	The effect of diacylglycerols on fibronectin release and its reversal by retinoic acid in cell culture. Carcinogenesis, 1991, 12, 1791-1794.	2.8	5
147	Eps8. The AFCS-nature Molecule Pages, 0, , .	0.2	0
148	Engaging bioscientists in science communication: Evidence from an international survey. F1000Research, 0, 6, 209.	1.6	0