Sarah Cobey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/142901/publications.pdf

Version: 2024-02-01

		212478	175968
58	4,600 citations	28	55
papers	citations	h-index	g-index
80	80	80	7139
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The Potential Beneficial Effects of Vaccination on Antigenically Evolving Pathogens. American Naturalist, 2022, 199, 223-237.	1.0	6
2	Modeling comparative cost-effectiveness of SARS-CoV-2 vaccine dose fractionation in India. Nature Medicine, 2022, 28, 934-938.	15.2	27
3	Incorporating temporal distribution of population-level viral load enables real-time estimation of COVID-19 transmission. Nature Communications, 2022, 13, 1155.	5.8	16
4	SARS-CoV-2 Infection Among Pregnant People at Labor and Delivery and Changes in Infection Rates in the General Population: Lessons Learned From Illinois. Public Health Reports, 2022, , 003335492210918.	1.3	0
5	PARIS and SPARTA: Finding the Achilles' Heel of SARS-CoV-2. MSphere, 2022, 7, e0017922.	1.3	25
6	Model-informed COVID-19 vaccine prioritization strategies by age and serostatus. Science, 2021, 371, 916-921.	6.0	588
7	COVID-19 Infection, Reinfection, and Vaccine Effectiveness in Arizona Frontline and Essential Workers: Protocol for a Longitudinal Cohort Study. JMIR Research Protocols, 2021, 10, e28925.	0.5	33
8	Concerns about SARS-CoV-2 evolution should not hold back efforts to expand vaccination. Nature Reviews Immunology, 2021, 21, 330-335.	10.6	98
9	Investigate the origins of COVID-19. Science, 2021, 372, 694-694.	6.0	92
10	Geographic and demographic heterogeneity of SARS-CoV-2 diagnostic testing in Illinois, USA, March to December 2020. BMC Public Health, 2021, 21, 1105.	1.2	19
11	An Egg-Derived Sulfated <i>N</i> -Acetyllactosamine Glycan Is an Antigenic Decoy of Influenza Virus Vaccines. MBio, 2021, 12, e0083821.	1.8	8
12	Lineage-specific protection and immune imprinting shape the age distributions of influenza B cases. Nature Communications, 2021, 12, 4313.	5.8	17
13	Fractionation of COVID-19 vaccine doses could extend limited supplies and reduce mortality. Nature Medicine, 2021, 27, 1321-1323.	15.2	35
14	Improvements in Severe Acute Respiratory Syndrome Coronavirus 2 Testing Cascade in the United States: Data From Serial Cross-sectional Assessments. Clinical Infectious Diseases, 2021, , .	2.9	5
15	Of variants and vaccines. Cell, 2021, 184, 6222-6223.	13.5	18
16	Comparison of Human H3N2 Antibody Responses Elicited by Egg-Based, Cell-Based, and Recombinant Protein–Based Influenza Vaccines During the 2017–2018 Season. Clinical Infectious Diseases, 2020, 71, 1447-1453.	2.9	27
17	Middle-aged individuals may be in a perpetual state of H3N2 influenza virus susceptibility. Nature Communications, 2020, 11, 4566.	5.8	43
18	Preexisting immunity shapes distinct antibody landscapes after influenza virus infection and vaccination in humans. Science Translational Medicine, 2020, 12, .	5.8	77

#	Article	IF	CITATIONS
19	CpG-creating mutations are costly in many human viruses. Evolutionary Ecology, 2020, 34, 339-359.	0.5	14
20	Modeling infectious disease dynamics. Science, 2020, 368, 713-714.	6.0	129
21	Practical considerations for measuring the effective reproductive number, Rt. PLoS Computational Biology, 2020, 16, e1008409.	1.5	343
22	Earliest infections predict the age distribution of seasonal influenza A cases. ELife, 2020, 9, .	2.8	49
23	Age-specific differences in the dynamics of protective immunity to influenza. Nature Communications, 2019, 10, 1660.	5.8	107
24	Influenza Virus Vaccination Elicits Poorly Adapted B Cell Responses in Elderly Individuals. Cell Host and Microbe, 2019, 25, 357-366.e6.	5.1	124
25	Poor Immunogenicity, Not Vaccine Strain Egg Adaptation, May Explain the Low H3N2 Influenza Vaccine Effectiveness in 2012–2013. Clinical Infectious Diseases, 2018, 67, 327-333.	2.9	53
26	Selection and Neutral Mutations Drive Pervasive Mutability Losses in Long-Lived Anti-HIV B-Cell Lineages. Molecular Biology and Evolution, 2018, 35, 1135-1146.	3.5	15
27	Repeated Vaccination May Protect Children From Influenza Infection. JAMA Network Open, 2018, 1, e183730.	2.8	1
28	Use of an individual-based model of pneumococcal carriage for planning a randomized trial of a whole-cell vaccine. PLoS Computational Biology, 2018, 14, e1006333.	1.5	6
29	Estimating Vaccine-Driven Selection in Seasonal Influenza. Viruses, 2018, 10, 509.	1.5	8
30	Response to Skowronski and De Serres. Clinical Infectious Diseases, 2018, 67, 1476-1476.	2.9	0
31	Characterization of the immunologic repertoire: A quick start guide. Immunological Reviews, 2018, 284, 5-8.	2.8	0
32	Immune History and Influenza Vaccine Effectiveness. Vaccines, 2018, 6, 28.	2.1	148
33	Spec-seq unveils transcriptional subpopulations of antibody-secreting cells following influenza vaccination. Journal of Clinical Investigation, 2018, 129, 93-105.	3.9	40
34	Immune history and influenza virus susceptibility. Current Opinion in Virology, 2017, 22, 105-111.	2.6	199
35	Does influenza drive absolute humidity?. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E2270-E2271.	3.3	20
36	Sick if you do, sick if you don't. Nature Ecology and Evolution, 2017, 1, 1602-1603.	3.4	0

#	Article	IF	CITATIONS
37	Host population structure and treatment frequency maintain balancing selection on drug resistance. Journal of the Royal Society Interface, 2017, 14, 20170295.	1.5	32
38	Contemporary H3N2 influenza viruses have a glycosylation site that alters binding of antibodies elicited by egg-adapted vaccine strains. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 12578-12583.	3.3	437
39	Recurring infection with ecologically distinct HPV types can explain high prevalence and diversity. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 13573-13578.	3.3	59
40	Limits to Causal Inference with State-Space Reconstruction for Infectious Disease. PLoS ONE, 2016, 11, e0169050.	1.1	44
41	Explaining the geographical origins of seasonal influenza A (H3N2). Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20161312.	1.2	21
42	Viral factors in influenza pandemic risk assessment. ELife, 2016, 5, .	2.8	82
43	Trade-offs in antibody repertoires to complex antigens. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140245.	1.8	54
44	The evolution within us. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140235.	1.8	34
45	Fighting microbial drug resistance: a primer on the role of evolutionary biology in public health. Evolutionary Applications, 2015, 8, 211-222.	1.5	34
46	K-Pax2: Bayesian identification of cluster-defining amino acid positions in large sequence datasets. Microbial Genomics, 2015, 1, e000025.	1.0	12
47	Pathogen evolution and the immunological niche. Annals of the New York Academy of Sciences, 2014, 1320, 1-15.	1.8	59
48	Pathogen Diversity and Hidden Regimes of Apparent Competition. American Naturalist, 2013, 181, 12-24.	1.0	41
49	The Hospital Microbiome Project: Meeting report for the 2nd Hospital Microbiome Project, Chicago, USA, January 15th, 2013. Standards in Genomic Sciences, 2013, 8, 571-579.	1.5	11
50	Niche and Neutral Effects of Acquired Immunity Permit Coexistence of Pneumococcal Serotypes. Science, 2012, 335, 1376-1380.	6.0	163
51	Improving influenza vaccine virus selectionReport of a WHO informal consultation held at WHO headquarters, Geneva, Switzerland, 14–16 June 2010. Influenza and Other Respiratory Viruses, 2012, 6, 142-152.	1.5	73
52	Strength and tempo of selection revealed in viral gene genealogies. BMC Evolutionary Biology, 2011, 11, 220.	3.2	69
53	Consequences of host heterogeneity, epitope immunodominance, and immune breadth for strain competition. Journal of Theoretical Biology, 2011, 270, 80-87.	0.8	24
54	Predicting the Epidemic Sizes of Influenza A/H1N1, A/H3N2, and B: A Statistical Method. PLoS Medicine, 2011, 8, e1001051.	3.9	153

SARAH COBEY

#	Article	IF	CITATION
55	Ecological factors driving the long-term evolution of influenza's host range. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 2803-2810.	1.2	7
56	Global Migration Dynamics Underlie Evolution and Persistence of Human Influenza A (H3N2). PLoS Pathogens, 2010, 6, e1000918.	2.1	151
57	Capturing escape in infectious disease dynamics. Trends in Ecology and Evolution, 2008, 23, 572-577.	4.2	26
58	Epochal Evolution Shapes the Phylodynamics of Interpandemic Influenza A (H3N2) in Humans. Science, 2006, 314, 1898-1903.	6.0	423