farzana Perwad

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1428985/publications.pdf

Version: 2024-02-01

17 papers	1,218 citations	11 h-index	940533 16 g-index
17	17	17	1288
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Dietary and Serum Phosphorus Regulate Fibroblast Growth Factor 23 Expression and 1,25-Dihydroxyvitamin D Metabolism in Mice. Endocrinology, 2005, 146, 5358-5364.	2.8	380
2	Fibroblast growth factor 23 impairs phosphorus and vitamin D metabolism in vivo and suppresses 25-hydroxyvitamin D-1α-hydroxylase expression in vitro. American Journal of Physiology - Renal Physiology, 2007, 293, F1577-F1583.	2.7	264
3	Burosumab versus conventional therapy in children with X-linked hypophosphataemia: a randomised, active-controlled, open-label, phase 3 trial. Lancet, The, 2019, 393, 2416-2427.	13.7	229
4	Fibroblast Growth Factor 23 and Risk of CKD Progression in Children. Clinical Journal of the American Society of Nephrology: CJASN, 2016, 11, 1989-1998.	4.5	64
5	Vitamin D metabolism in the kidney: Regulation by phosphorus and fibroblast growth factor 23. Molecular and Cellular Endocrinology, 2011, 347, 17-24.	3.2	62
6	Tumor necrosis factor stimulates fibroblast growth factor 23 levels in chronic kidney disease and non-renal inflammation. Kidney International, 2019, 96, 890-905.	5.2	56
7	Fibroblast Growth Factor 23 Expression Is Increased in Multiple Organs in Mice With Folic Acid-Induced Acute Kidney Injury. Frontiers in Physiology, 2018, 9, 1494.	2.8	33
8	Characterization of FGF23-Dependent Egr-1 Cistrome in the Mouse Renal Proximal Tubule. PLoS ONE, 2015, 10, e0142924.	2.5	26
9	Patient-Reported Outcomes from a Randomized, Active-Controlled, Open-Label, Phase 3 Trial of Burosumab Versus Conventional Therapy in Children with X-Linked Hypophosphatemia. Calcified Tissue International, 2021, 108, 622-633.	3.1	26
10	Burosumab treatment in adults with X-linked hypophosphataemia: 96-week patient-reported outcomes and ambulatory function from a randomised phase 3 trial and open-label extension. RMD Open, 2021, 7, e001714.	3.8	26
11	Monogenic Causes of Proteinuria in Children. Frontiers in Medicine, 2018, 5, 55.	2.6	17
12	Burosumab Therapy for X-Linked Hypophosphatemia and Therapeutic Implications for CKD. Clinical Journal of the American Society of Nephrology: CJASN, 2019, 14, 1097-1099.	4.5	12
13	α-Lipoic Acid (ALA) Improves Cystine Solubility in Cystinuria: Report of 2 Cases. Pediatrics, 2020, 145, e20192951.	2.1	10
14	Association Between Chronic Kidney Disease–Mineral Bone Disease (CKD-MBD) and Cognition in Children: Chronic Kidney Disease in Children (CKiD) Study. Kidney Medicine, 2020, 2, 398-406.	2.0	8
15	Genetic Variants Associated With Mineral Metabolism Traits in Chronic Kidney Disease. Journal of Clinical Endocrinology and Metabolism, 2022, 107, e3866-e3876.	3.6	3
16	Adverse Consequences of Chronic Kidney Disease on Bone Health in Children. Seminars in Nephrology, 2021, 41, 439-445.	1.6	2
17	Renal Dnase1 expression is regulated by FGF23 but loss of Dnase1 does not alter renal phosphate handling. Scientific Reports, 2021, 11, 6175.	3.3	O