## Margit Bak Jensen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1428763/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Assessment of positive emotions in animals to improve their welfare. Physiology and Behavior, 2007, 92, 375-397.                                                                          | 2.1 | 1,029     |
| 2  | Quantifying behavioural priorities—effects of time constraints on behaviour of dairy cows, Bos<br>taurus. Applied Animal Behaviour Science, 2005, 92, 3-14.                               | 1.9 | 229       |
| 3  | The effect of reward duration on demand functions for rest in dairy heifers and lying requirements as measured by demand functions. Applied Animal Behaviour Science, 2005, 90, 207-217.  | 1.9 | 146       |
| 4  | Play behaviour in dairy calves kept in pens: the effect of social contact and space allowance. Applied<br>Animal Behaviour Science, 1998, 56, 97-108.                                     | 1.9 | 144       |
| 5  | Behaviour around the time of calving in dairy cows. Applied Animal Behaviour Science, 2012, 139, 195-202.                                                                                 | 1.9 | 125       |
| 6  | Play behaviour in group-housed dairy calves, the effect of space allowance. Applied Animal Behaviour<br>Science, 2000, 67, 35-46.                                                         | 1.9 | 106       |
| 7  | Invited review: Lying time and the welfare of dairy cows. Journal of Dairy Science, 2021, 104, 20-46.                                                                                     | 3.4 | 104       |
| 8  | Calves' motivation for access to two different types of social contact measured by operant<br>conditioning. Applied Animal Behaviour Science, 2002, 79, 175-194.                          | 1.9 | 96        |
| 9  | Effects of confinement on rebounds of locomotor behaviour of calves and heifers, and the spatial preferences of calves. Applied Animal Behaviour Science, 1999, 62, 43-56.                | 1.9 | 62        |
| 10 | Social isolation affects the motivation to work for food and straw in pigs as measured by operant conditioning techniques. Applied Animal Behaviour Science, 2002, 77, 295-309.           | 1.9 | 59        |
| 11 | The effect of milk flow rate and milk allowance on feeding related behaviour in dairy calves fed by computer controlled milk feeders. Applied Animal Behaviour Science, 2003, 82, 87-100. | 1.9 | 51        |
| 12 | Motivation for social contact in horses measured by operant conditioning. Applied Animal Behaviour<br>Science, 2011, 132, 131-137.                                                        | 1.9 | 46        |
| 13 | Using motivation tests to assess ethological needs and preferences. Applied Animal Behaviour Science, 2008, 113, 340-356.                                                                 | 1.9 | 45        |
| 14 | Prepartum Maternal Behavior of Domesticated Cattle: A Comparison with Managed, Feral, and Wild<br>Ungulates. Frontiers in Veterinary Science, 2018, 5, 45.                                | 2.2 | 45        |
| 15 | The strength of pigs' preferences for different rooting materials measured using concurrent schedules of reinforcement. Applied Animal Behaviour Science, 2005, 94, 31-48.                | 1.9 | 41        |
| 16 | The value assigned to six different rooting materials by growing pigs. Applied Animal Behaviour<br>Science, 2007, 108, 31-44.                                                             | 1.9 | 39        |
| 17 | The early behaviour of cow and calf in an individual calving pen. Applied Animal Behaviour Science, 2011, 134, 92-99.                                                                     | 1.9 | 38        |
| 18 | Prior deprivation and reward duration affect the demand function for rest in dairy heifers. Applied Animal Behaviour Science, 2004, 88, 1-11.                                             | 1.9 | 34        |

MARGIT BAK JENSEN

| #  | Article                                                                                                                                                                                                                                             | lF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | A note on the effect of isolation during testing and length of previous confinement on locomotor<br>behaviour during open-field test in dairy calves. Applied Animal Behaviour Science, 2001, 70, 309-315.                                          | 1.9 | 31        |
| 20 | Effect of group size and health status on behavior and feed intake of multiparous dairy cows in early<br>lactation. Journal of Dairy Science, 2017, 100, 9759-9768.                                                                                 | 3.4 | 31        |
| 21 | The motivation-based calving facility: Social and cognitive factors influence isolation seeking behaviour of Holstein dairy cows at calving. PLoS ONE, 2018, 13, e0191128.                                                                          | 2.5 | 30        |
| 22 | Chopped or Long Roughage: What Do Calves Prefer? Using Cross Point Analysis of Double Demand<br>Functions. PLoS ONE, 2014, 9, e88778.                                                                                                               | 2.5 | 27        |
| 23 | Use of a pneumatic push gate to measure dairy cattle motivation to lie down in a deep-bedded area.<br>Applied Animal Behaviour Science, 2018, 201, 15-24.                                                                                           | 1.9 | 23        |
| 24 | Invited review: Freedom from thirst—Do dairy cows and calves have sufficient access to drinking water?. Journal of Dairy Science, 2021, 104, 11368-11385.                                                                                           | 3.4 | 23        |
| 25 | Dairy cows fed a low energy diet before dry-off show signs of hunger despite ad libitum access.<br>Scientific Reports, 2019, 9, 16159.                                                                                                              | 3.3 | 17        |
| 26 | Does dairy calves' motivation for social play behaviour build up over time?. Applied Animal Behaviour<br>Science, 2019, 214, 18-24.                                                                                                                 | 1.9 | 16        |
| 27 | Age at introduction to the group affects dairy calves' use of a computer-controlled milk feeder.<br>Applied Animal Behaviour Science, 2007, 107, 22-31.                                                                                             | 1.9 | 15        |
| 28 | Effects of feeding level, milking frequency, and single injection of cabergoline on feed intake, milk<br>yield, milk leakage, and clinical udder characteristics during dry-off in dairy cows. Journal of Dairy<br>Science, 2021, 104, 11108-11125. | 3.4 | 13        |
| 29 | Hay provision affects 24-h performance of normal and abnormal oral behaviors in individually housed dairy calves. Journal of Dairy Science, 2022, 105, 4434-4448.                                                                                   | 3.4 | 13        |
| 30 | Hunger in pregnant sows: Effects of a fibrous diet and free access to straw. Applied Animal Behaviour<br>Science, 2015, 171, 81-87.                                                                                                                 | 1.9 | 12        |
| 31 | Secluded maternity areas for parturient dairy cows offer protection from herd members. Journal of Dairy Science, 2019, 102, 5492-5500.                                                                                                              | 3.4 | 12        |
| 32 | Locomotor behaviour in dairy calves, the use of demand functions to assess the effect of deprivation.<br>Applied Animal Behaviour Science, 2004, 86, 3-14.                                                                                          | 1.9 | 11        |
| 33 | The degree of visual cover and location of birth fluids affect dairy cows' choice of calving site.<br>Journal of Dairy Science, 2018, 101, 9483-9492.                                                                                               | 3.4 | 11        |
| 34 | The effect of milk feeding strategy and restriction of meal patterning on behavior, solid feed intake,<br>and growth performance of male dairy calves fed via computer-controlled milk feeders. Journal of<br>Dairy Science, 2020, 103, 8494-8506.  | 3.4 | 10        |
| 35 | The effect of deep straw versus cubicle housing on behaviour during the dry period in Holstein cows.<br>Applied Animal Behaviour Science, 2018, 209, 1-7.                                                                                           | 1.9 | 8         |
| 36 | The role of social behavior in cattle welfare. , 2018, , 123-155.                                                                                                                                                                                   |     | 7         |

36 The role of social behavior in cattle welfare. , 2018, , 123-155.

Margit Bak Jensen

| #  | Article                                                                                                                                                                                             | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Better recovery from lameness among dairy cows housed in hospital pens. Journal of Dairy Science, 2019, 102, 11291-11297.                                                                           | 3.4 | 7         |
| 38 | Do dietary and milking frequency changes during a gradual dry-off affect feed-related attention bias and visual lateralisation in dairy cows?. Applied Animal Behaviour Science, 2020, 223, 104923. | 1.9 | 7         |
| 39 | Methodology for experimental and observational animal studies in cow-calf contact systems. Journal of Dairy Research, 2020, 87, 115-121.                                                            | 1.4 | 5         |
| 40 | A survey on management and housing of peri-parturient dairy cows and their calves. Animal, 2021, 15, 100388.                                                                                        | 3.3 | 4         |
| 41 | Effect of straw amount on feed intake and weight gain in growing pigs housed in pens with partly slatted floor. Animal, 2020, 14, 1659-1666.                                                        | 3.3 | 3         |
| 42 | Assessing response to dry-off in dairy cows kept outdoors using spontaneous behaviours and infrared thermography—a pilot study. Tropical Animal Health and Production, 2021, 53, 46.                | 1.4 | 3         |
| 43 | Infectious Disease Does Not Impact the Lying and Grooming Behaviour of Post-Parturient Dairy Cows.<br>Animals, 2019, 9, 634.                                                                        | 2.3 | 2         |
| 44 | Dairy cows with mild-moderate mastitis change lying behavior in hospital pens. Translational Animal Science, 2020, 4, 1247-1251.                                                                    | 1.1 | 2         |
| 45 | The effect of hides and parity on behavior of periparturient dairy cows at pasture. Journal of Dairy Science, 2022, 105, 6196-6206.                                                                 | 3.4 | 2         |