List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1428625/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lake Level Reconstructed From DEM-Based Virtual Station: Comparison of Multisource DEMs With Laser Altimetry and UAV-LiDAR Measurements. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 1-5.	1.4	3
2	Satellite and UAV-based remote sensing for assessing the flooding risk from Tibetan lake expansion and optimizing the village relocation site. Science of the Total Environment, 2022, 802, 149928.	3.9	14
3	Remote sensing estimation of the flood storage capacity of basin-scale lakes and reservoirs at high spatial and temporal resolutions. Science of the Total Environment, 2022, 807, 150772.	3.9	19
4	Satellite Laser Altimetry Reveals a Net Water Mass Gain in Global Lakes With Spatial Heterogeneity in the Early 21st Century. Geophysical Research Letters, 2022, 49, .	1.5	22
5	Large-Scale Detection of the Tableland Areas and Erosion-Vulnerable Hotspots on the Chinese Loess Plateau. Remote Sensing, 2022, 14, 1946.	1.8	7
6	Regional assessment of the potential risks of rapid lake expansion impacting on the Tibetan human living environment. Environmental Earth Sciences, 2021, 80, 1.	1.3	7
7	Century‣cale Reconstruction of Water Storage Changes of the Largest Lake in the Inner Mongolia Plateau Using a Machine Learning Approach. Water Resources Research, 2021, 57, e2020WR028831.	1.7	37
8	Remote Sensing Investigation of the Offset Effect between Reservoir Impoundment and Glacier Meltwater Supply in Tibetan Highland Catchment. Water (Switzerland), 2021, 13, 1307.	1.2	2
9	Spatially and Temporally Resolved Monitoring of Glacial Lake Changes in Alps During the Recent Two Decades. Frontiers in Earth Science, 2021, 9, .	0.8	7
10	Water Residence Time and Temperature Drive the Dynamics of Dissolved Organic Matter in Alpine Lakes in the Tibetan Plateau. Global Biogeochemical Cycles, 2021, 35, e2020GB006908.	1.9	18
11	Divergent Causes of Terrestrial Water Storage Decline Between Drylands and Humid Regions Globally. Geophysical Research Letters, 2021, 48, .	1.5	23
12	Ongoing Drainage Reorganization Driven by Rapid Lake Growths on the Tibetan Plateau. Geophysical Research Letters, 2021, 48, e2021GL095795.	1.5	21
13	Impact of amplified evaporation due to lake expansion on the water budget across the inner Tibetan Plateau. International Journal of Climatology, 2020, 40, 2091-2105.	1.5	24
14	Recent Abnormal Hydrologic Behavior of Tibetan Lakes Observed by Multi-Mission Altimeters. Remote Sensing, 2020, 12, 2986.	1.8	12
15	Remote Sensingâ€Based Modeling of the Bathymetry and Water Storage for Channel‶ype Reservoirs Worldwide. Water Resources Research, 2020, 56, e2020WR027147.	1.7	23
16	China's inland water dynamics: The significance of water body types. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 13876-13878.	3.3	42
17	Integration of TanDEM-X and SRTM DEMs and Spectral Imagery to Improve the Large-Scale Detection of Opencast Mining Areas. Remote Sensing, 2020, 12, 1451.	1.8	18
18	Automatic watershed delineation in the Tibetan endorheic basin: A lake-oriented approach based on digital elevation models. Geomorphology, 2020, 358, 107127.	1.1	22

#	Article	IF	CITATIONS
19	Which heterogeneous glacier melting patterns can be robustly observed from space? A multi-scale assessment in southeastern Tibetan Plateau. Remote Sensing of Environment, 2020, 242, 111777.	4.6	36
20	An Effective Low-Cost Remote Sensing Approach to Reconstruct the Long-Term and Dense Time Series of Area and Storage Variations for Large Lakes. Sensors, 2019, 19, 4247.	2.1	12
21	Global open-access DEM performances in Earth's most rugged region High Mountain Asia: A multi-level assessment. Geomorphology, 2019, 338, 16-26.	1.1	65
22	Temporal Variability of Precipitation and Biomass of Alpine Grasslands on the Northern Tibetan Plateau. Remote Sensing, 2019, 11, 360.	1.8	33
23	A Global Assessment of Terrestrial Evapotranspiration Increase Due to Surface Water Area Change. Earth's Future, 2019, 7, 266-282.	2.4	60
24	Identifying Emerging Reservoirs along Regulated Rivers Using Multi-Source Remote Sensing Observations. Remote Sensing, 2019, 11, 25.	1.8	11
25	Large-scale mapping of gully-affected areas: An approach integrating Google Earth images and terrain skeleton information. Geomorphology, 2018, 314, 13-26.	1.1	32
26	Remote Sensing Detection of Vegetation and Landform Damages by Coal Mining on the Tibetan Plateau. Sustainability, 2018, 10, 3851.	1.6	22
27	Recent global decline in endorheic basin water storages. Nature Geoscience, 2018, 11, 926-932.	5.4	282
28	Long-term surface water changes and driving cause in Xiong'an, China: from dense Landsat time series images and synthetic analysis. Science Bulletin, 2018, 63, 708-716.	4.3	62
29	Heterogeneous glacial lake changes and links of lake expansions to the rapid thinning of adjacent glacier termini in the Himalayas. Geomorphology, 2017, 280, 30-38.	1.1	80
30	Recent dynamics of alpine lakes on the endorheic Changtang Plateau from multi-mission satellite data. Journal of Hydrology, 2017, 552, 633-645.	2.3	47
31	Recent Changes in Land Water Storage and its Contribution to Sea Level Variations. Surveys in Geophysics, 2017, 38, 131-152.	2.1	59
32	A regional-scale assessment of Himalayan glacial lake changes using satellite observations from 1990 to 2015. Remote Sensing of Environment, 2017, 189, 1-13.	4.6	240
33	Glacial lake evolution in the southeastern Tibetan Plateau and the cause of rapid expansion of proglacial lakes linked to glacial-hydrogeomorphic processes. Journal of Hydrology, 2016, 540, 504-514.	2.3	80
34	Homogenization of surface temperature data in High Mountain Asia through comparison of reanalysis data and station observations. International Journal of Climatology, 2016, 36, 1088-1101.	1.5	15
35	Representative lake water extent mapping at continental scales using multi-temporal Landsat-8 imagery. Remote Sensing of Environment, 2016, 185, 129-141.	4.6	175
36	Precipitation variability in High Mountain Asia from multiple datasets and implication for water balance analysis in large lake basins. Global and Planetary Change, 2016, 145, 20-29.	1.6	23

#	Article	IF	CITATIONS
37	Contrasting evolution patterns between glacier-fed and non-glacier-fed lakes in the Tanggula Mountains and climate cause analysis. Climatic Change, 2016, 135, 493-507.	1.7	60
38	Heterogeneous change patterns of water level for inland lakes in High Mountain Asia derived from multiâ€mission satellite altimetry. Hydrological Processes, 2015, 29, 2769-2781.	1.1	41
39	Estimation of mass balance of Dongkemadi glaciers with multiple methods based on multi-mission satellite data. Quaternary International, 2015, 371, 58-66.	0.7	14
40	Heterogeneous changes of glaciers over the western Kunlun Mountains based on ICESat and Landsat-8 derived glacier inventory. Remote Sensing of Environment, 2015, 168, 13-23.	4.6	60
41	Shifts in water-level variation of Namco in the central Tibetan Plateau from ICESat and CryoSat-2 altimetry and station observations. Science Bulletin, 2015, 60, 1287-1297.	4.3	56
42	Can mountain glacier melting explains the GRACE-observed mass loss in the southeast Tibetan Plateau: From a climate perspective?. Global and Planetary Change, 2015, 124, 1-9.	1.6	56
43	Interâ€annual changes of alpine inland lake water storage on the Tibetan Plateau: Detection and analysis by integrating satellite altimetry and optical imagery. Hydrological Processes, 2014, 28, 2411-2418.	1.1	49
44	Remote sensing of alpine lake water environment changes on the Tibetan Plateau and surroundings: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 92, 26-37.	4.9	130
45	Recent Dramatic Variations of China's Two Largest Freshwater Lakes: Natural Process or Influenced by the Three Gorges Dam?. Environmental Science & Technology, 2014, 48, 2086-2087.	4.6	13
46	Seasonal and abrupt changes in the water level of closed lakes on the Tibetan Plateau and implications for climate impacts. Journal of Hydrology, 2014, 514, 131-144.	2.3	94
47	Modeling and analysis of lake water storage changes on the Tibetan Plateau using multi-mission satellite data. Remote Sensing of Environment, 2013, 135, 25-35.	4.6	305
48	Unified fusion of remote-sensing imagery: generating simultaneously high-resolution synthetic spatial–temporal–spectral earth observations. Remote Sensing Letters, 2013, 4, 561-569.	0.6	85