
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1428598/publications.pdf Version: 2024-02-01

SILVIA LUZZATI

#	Article	IF	CITATIONS
1	Tracing photoinduced electron transfer process in conjugated polymer/fullerene bulk heterojunctions in real time. Chemical Physics Letters, 2001, 340, 232-236.	1.2	563
2	Rigid rod conjugated polymers for nonlinear optics: 1. Characterization and linear optical properties of poly(aryleneethynylene) derivatives. Macromolecules, 1994, 27, 562-571.	2.2	216
3	Interlayers for non-fullerene based polymer solar cells: distinctive features and challenges. Energy and Environmental Science, 2021, 14, 180-223.	15.6	165
4	Rigid Rod Conjugated Polymers for Nonlinear Optics. 2. Synthesis and Characterization of Phenyleneâ~'Ethynylene Oligomers. Macromolecules, 1996, 29, 446-455.	2.2	118
5	Efficient Solution-Processed Nanoplatelet-Based Light-Emitting Diodes with High Operational Stability in Air. Nano Letters, 2018, 18, 3441-3448.	4.5	88
6	Photoinduced absorption of polymer solutions. Physical Review B, 1993, 48, 14809-14817.	1.1	82
7	Synthesis and characterization of new electron acceptor perylene diimide molecules for photovoltaic applications. Dyes and Pigments, 2013, 99, 329-338.	2.0	56
8	Infrared spectroelectrochemical investigations on the doping of soluble poly(isothianaphthene) Tj ETQq0 0 0 rgB	BT /Overloc	k 10 Tf 50 46
9	Photo-induced electron transfer from a dithieno thiophene-based polymer to TiO2. Thin Solid Films, 2002, 403-404, 52-56.	0.8	53
10	Positive and Negative Charge Carriers in Doped or Photoexcited Polydithienothiophenes:  A Comparative Study Using Raman, Infrared, and Electron Spin Resonance Spectroscopy. Journal of	1.2	51

	Physical Chemistry B, 2002, 106, 3583-3591.		
11	Molecular Crystal Architecture and Optical Properties of a Thiohelicenes Series Containing 5, 7, 9, and 11 Rings Prepared via Photochemical Synthesis. Chemistry of Materials, 2001, 13, 3906-3914.	3.2	50
12	Perfluorocarbon–hydrocarbon self-assembly. Part 16: Anilines as new electron donor modules for halogen bonded infinite chain formation. Tetrahedron, 2002, 58, 4023-4029.	1.0	45
13	Synthesis of donor–acceptor poly(perylene diimide-altoligothiophene) copolymers as n-type materials for polymeric solar cells. Polymer, 2010, 51, 2264-2270.	1.8	45
14	Efficient single-layer yellow-light emitting-diodes with ladder-type poly(p-phenylene)/poly(decyl-thiophene) blends. Solid State Communications, 1999, 109, 455-459.	0.9	39
15	Solid-State Optical and Structural Modifications Induced by Temperature in a Chiral Poly-3-alkylthiophene. Chemistry of Materials, 2002, 14, 4819-4826.	3.2	38
16	Thermal characterization and annealing effects of polythiophene/fullerene photoactive layers for solar cells. Thin Solid Films, 2006, 511-512, 489-493.	0.8	36
17	Tin-Free Synthesis of a Ternary Random Copolymer for BHJ Solar Cells: Direct (Hetero)arylation versus Stille Polymerization. Macromolecules, 2015, 48, 7039-7048.	2.2	36
18	Optical excitations of poly-3-alkylthiophene films and solutions. Physical Review B, 1992, 46, 13008-13016.	1.1	35

2

#	Article	IF	CITATIONS
19	Donor–acceptor polythiophene copolymers with tunable acceptor content for photoelectric conversion devices. Journal of Materials Chemistry, 2004, 14, 67-74.	6.7	34
20	Dithienothiophene and dithienothiophene-S,S-dioxide copolymers for photovoltaics. Thin Solid Films, 2002, 403-404, 66-70.	0.8	33
21	Synthesis of Soluble Donorâ^'Acceptor Double-Cable Polymers Based on Polythiophene and Tetracyanoanthraquinodimethane (TCAQ). Organic Letters, 2003, 5, 1669-1672.	2.4	33
22	Vibrational Spectroscopy on pDTT3A Low Band Gap Polymer Based on Dithienothiophene. Journal of Physical Chemistry B, 2001, 105, 46-52.	1.2	30
23	Hybrid iodoperfluoroalkane-ferrocene supramolecular arrays: the shortest contacts iodine forms with nitrogen atoms and unsaturated moieties. Journal of Fluorine Chemistry, 2004, 125, 629-640.	0.9	29
24	Optical properties and long-lived charged photoexcitations in polydiacetylenes. Physical Review B, 1994, 49, 8059-8066.	1.1	27
25	Long-Lived Photoinduced Charges in Donorâ^'Acceptor Anthraquinone-Substituted Thiophene Copolymers. Journal of Physical Chemistry B, 2006, 110, 5351-5358.	1.2	27
26	External quantum efficiency versus charge carriers mobility in polythiophene/methanofullerene based planar photodetectors. Journal of Applied Physics, 2007, 102, 024503.	1.1	27
27	First Detailed Determination of the Molecular Conformation and the Crystalline Packing of a Chiral Poly(3-alkylthiophene):Â Poly-3-(S)-2-methylbutylthiophene. Macromolecules, 2007, 40, 3-5.	2.2	27
28	Postâ€Đeposition Activation of Latent Hydrogenâ€Bonding: A New Paradigm for Enhancing the Performances of Bulk Heterojunction Solar Cells. Advanced Functional Materials, 2014, 24, 7410-7419.	7.8	27
29	New polythiophenes bearing electron-acceptor phthalocyanine chromophores. Tetrahedron Letters, 2003, 44, 8475-8478.	0.7	26
30	PBDTTPD for plastic solar cells via Pd(PPh ₃) ₄ -catalyzed direct (hetero)arylation polymerization. Journal of Materials Chemistry A, 2016, 4, 17163-17170.	5.2	26
31	Morphological characterization of poly(3-octylthiophene):plasticizer:C60 blends. Thin Solid Films, 2002, 403-404, 489-494.	0.8	25
32	Double acceptor D–A copolymers containing benzotriazole and benzothiadiazole units: chemical tailoring towards efficient photovoltaic properties. Journal of Materials Chemistry A, 2013, 1, 10736.	5.2	25
33	Synthesis and characterization of alkyl-substituted poly[E-1,2-(2,2′-dithienyl)ethylene]s. Synthetic Metals, 1994, 62, 223-228.	2.1	24
34	A Novel Diruthenium Acetylide Donor Complex as an Unusual Active Material for Bulk Heterojunction Solar Cells. Organometallics, 2011, 30, 1279-1282.	1.1	24
35	The effect of perylene diimides chemical structure on the photovoltaic performance of P3HT/perylene diimides solar cells. Dyes and Pigments, 2015, 120, 57-64.	2.0	23
36	Dithienothiophene based polymer as electron donor in plastic solar cells. Thin Solid Films, 2008, 516, 7205-7208.	0.8	22

#	Article	IF	CITATIONS
37	Improving the efficiency of P3HT:perylene diimide solar cells via bay-substitution with fused aromatic rings. RSC Advances, 2013, 3, 9185.	1.7	22
38	Multiple Electrochemical Doping-Induced Insulator-to-Conductor Transitions Observed in the Conjugated Ladder Polymer Polybenzimidazobenzophenanthroline (BBL)#. Journal of Physical Chemistry B, 2000, 104, 9430-9437.	1.2	20
39	Photochemical synthesis and optical properties of high membered thiohelicenes. Synthetic Metals, 2001, 119, 79-80.	2.1	20
40	Poly(3-butyl-co-3,4-dibutylthiophene) copolymers: a new series of conjugated materials with a different energy-gap. Polymer, 1996, 37, 1059-1064.	1.8	18
41	Synthesis and characterization of perylene-based donor–acceptor copolymers containing triple bonds. Synthetic Metals, 2010, 160, 996-1001.	2.1	18
42	Luminescence excitation spectroscopy of highly oriented poly (3-octylthiophene)-polyethylene blends. Synthetic Metals, 1996, 76, 23-26.	2.1	16
43	Design of perylene diimides for organic solar cell: Effect of molecular steric hindrance and extended conjugation. Materials Chemistry and Physics, 2015, 163, 152-160.	2.0	16
44	A Donor Polymer with a Good Compromise between Efficiency and Sustainability for Organic Solar Cells. Advanced Energy and Sustainability Research, 2021, 2, 2100069.	2.8	15
45	Efficient single layer yellow light emitting diodes made of a blend of a ladder-type poly(p-phenylene) and polyalkylthiophene. Optical Materials, 1999, 12, 311-314.	1.7	14
46	A bifunctional conjugated polyelectrolyte for the interfacial engineering of polymer solar cells. Journal of Colloid and Interface Science, 2019, 538, 611-619.	5.0	14
47	Polarized resonant Raman scattering of cis polyacetylene. Journal of Chemical Physics, 1989, 91, 732-737.	1.2	13
48	Coarse-grained kinetic modelling of bilayer heterojunction organic solar cells. Organic Electronics, 2012, 13, 750-761.	1.4	13
49	Spectroscopy of transition-metal substituted oligothiophenes. Synthetic Metals, 1998, 93, 27-32.	2.1	12
50	Tuning of the photoinduced charge transfer process in donor–acceptor double-cable copolymers. Synthetic Metals, 2003, 139, 731-733.	2.1	12
51	Infrared Spectra and Photoinduced Absorption of C60 Doped Polyhexylthiophene. Molecular Crystals and Liquid Crystals, 1994, 256, 927-932.	0.3	11
52	Electronic structure of polydithienothiophene materials. Synthetic Metals, 1999, 101, 175-176.	2.1	11
53	Spectral signatures of positive and negative charged states in doped and photoexcited low band-gap polydithienothiophenes. Synthetic Metals, 2003, 139, 747-750.	2.1	11
54	Donor?acceptor ?double-cable? polythiophenes with tunable acceptor content. Thin Solid Films, 2004, 451-452, 2-6.	0.8	11

#	Article	IF	CITATIONS
55	Photoexcitations in conjugated polymer superlattices. Physics Letters, Section A: General, Atomic and Solid State Physics, 1994, 185, 431-434.	0.9	10
56	Photoexcitation studies in poly[1,6-di(N-carbazolyl)-2,4-hexadiyne]. Correlation of spectral features with the degree of order in polycrystalline samples. Synthetic Metals, 1994, 68, 33-37.	2.1	10
57	Structural effects in poly(3-alkylthiophene)s on the exposition to poor solvent. Macromolecular Rapid Communications, 1997, 18, 939-943.	2.0	10
58	Polarization properties of a novel oriented polydiacetylene. Synthetic Metals, 1998, 95, 47-52.	2.1	10
59	Spectroscopical evidences of photoinduced charge transfer in blends of C60 and thiophene-based copolymers with a tunable energy gap. Synthetic Metals, 2001, 116, 171-174.	2.1	10
60	Effect of the introduction of an alcohol-soluble conjugated polyelectrolyte as cathode interlayer in solution-processed organic light-emitting diodes and photovoltaic devices. Chemical Papers, 2018, 72, 1753-1759.	1.0	10
61	Characterization of poly(3-decylmethoxythiophene) multilayers. Thin Solid Films, 1997, 299, 169-172.	0.8	9
62	Relaxation processes in thiophene-based random copolymers. Chemical Physics Letters, 1998, 288, 749-754.	1.2	9
63	Depolarization ratios of the resonance Raman bands of soluble transâ€polyacetylene. Journal of Chemical Physics, 1987, 87, 6816-6818.	1.2	8
64	Synthesis and properties of alkyl substituted poly(2,2′-dithiophene-5,5′-diylvinylene)s. Synthetic Metals, 1993, 55, 1188-1192.	2.1	8
65	In situ UV-VIS-NIR and Raman spectroelectrochemical studies of the conjugated ladder polymer polybenzimidazobenzophenanthroline (BBL). Synthetic Metals, 2001, 119, 319-320.	2.1	8
66	Even parity states in small band gap π-conjugated polymers: polydithienothiophenes. Chemical Physics Letters, 2004, 394, 132-136.	1.2	8
67	The effect of donor content on the efficiency of P3HT:PCBM bilayers: optical and photocurrent spectral data analyses. Physical Chemistry Chemical Physics, 2015, 17, 2447-2456.	1.3	8
68	Tungsten oxide thin film photo-anodes by reactive RF diode sputtering. Thin Solid Films, 2016, 616, 375-380.	0.8	8
69	Benzothiadiazole-based conjugated polyelectrolytes for interfacial engineering in optoelectronic devices. Pure and Applied Chemistry, 2019, 91, 477-488.	0.9	8
70	Size determination of a chain in a bad solvent by intensity light scattering comparison with a good solvent state. Polymer, 1986, 27, 834-838.	1.8	7
71	An N-type Naphthalene Diimide Ionene Polymer as Cathode Interlayer for Organic Solar Cells. Energies, 2021, 14, 454.	1.6	7
72	Sulfonate-Conjugated Polyelectrolytes as Anode Interfacial Layers in Inverted Organic Solar Cells. Molecules, 2021, 26, 763.	1.7	7

#	Article	IF	CITATIONS
73	Thermochromism of alkyl substituted poly(dithiophenediylvinylenes). Synthetic Metals, 1993, 55, 97-102.	2.1	6
74	Spectroscopic analysis of structure in poly(3-butyl-co-3,4-dibutylthiophene) copolymers. Synthetic Metals, 1995, 69, 375-376.	2.1	6
75	Effect of regioregularity on the photoresponse of Schottky-type junctions based on poly(3-alkylthiophenes). Synthetic Metals, 2001, 125, 313-317.	2.1	6
76	All-polymer bulk heterojunction solar cells with high fill factors based on blends of poly-3-hexylthiophene: poly(perylene diimide-alt-terthiophene). Materials Research Society Symposia Proceedings, 2012, 1390, 160.	0.1	6
77	Femtosecond transient bleaching decay in poly(alkyl-thiophene-vinylene)s in solution and in film. Solid State Communications, 1993, 86, 583-588.	0.9	5
78	Diketopyrrolopyrrole latent pigment-based bilayer solar cells. Organic Photonics and Photovoltaics, 2018, 6, 8-16.	1.3	5
79	Amphiphilic PTB7-Based Rod-Coil Block Copolymer for Water-Processable Nanoparticles as an Active Layer for Sustainable Organic Photovoltaic: A Case Study. Polymers, 2022, 14, 1588.	2.0	5
80	Photoexcitation spectroscopy of poly-3-alkylthiophenes. Synthetic Metals, 1991, 41, 1323-1326.	2.1	4
81	Optical excitations in thiophenic based polymeric heterostructures. Physics Letters, Section A: General, Atomic and Solid State Physics, 1996, 213, 288-292.	0.9	4
82	Photoluminescence of thiophene-based copolymers with tunable energy gap. Synthetic Metals, 1997, 84, 551-552.	2.1	4
83	Polyalkylthiophene-based photodetector devices: effect of side-chain length on the device performance. Materials Science and Engineering C, 2001, 15, 261-263.	3.8	4
84	New diketopyrrolopyrrole based D–A–D π-conjugated molecules: Synthesis, optical, electrochemical, morphological and photovoltaic properties. Materials Chemistry and Physics, 2014, 147, 365-370.	2.0	4
85	Resonance Raman study of a low energy gap conjugated polymer: Polydithieno(3,4-b;3′,4′-d)thiophene. Synthetic Metals, 1991, 41, 1319-1322.	2.1	3
86	Polarized Raman spectra of polyacetylenes and polythiophenes. Synthetic Metals, 1989, 28, D331-D337.	2.1	2
87	<title>Infrared spectroscopic investigations of organic polymeric photovoltaic systems</title> . , 2002, , .		2
88	Crystalline isotactic trans-1,4-poly(1,3-pentadiene). Explanation of a stress-induced conformational transition. European Polymer Journal, 1987, 23, 217-221.	2.6	1
89	Photoexcitations of thiophene-based copolymers with tunable energy gap. Synthetic Metals, 1999, 102, 1202-1203.	2.1	1
90	Luminescence of an alternated thiophene-3-alkylthiophene copolymer. Synthetic Metals, 1999, 102, 1245.	2.1	1

#	Article	IF	CITATIONS
91	Resonant Raman scattering dispersion in poly(dithieno[3,4-b:3′,4-d]-thiophene): 2Ag spectroscopy. Synthetic Metals, 2005, 150, 251-253.	2.1	1
92	Characterization of thin films of regioregular poly(alkylthiophene)s bearing optically active substituents. E-Polymers, 2009, 9, .	1.3	1
93	Photoinduced Absorption Spectroscopy of Poly-3-Alkylthiophenes. Materials Research Society Symposia Proceedings, 1992, 247, 669.	0.1	0
94	Photoexcited states in poly-3-alkylthiophene solutions. Synthetic Metals, 1995, 69, 381-382.	2.1	0
95	Triplet photoexcitations in a polythiophene with a high degree of energetic disorder. Synthetic Metals, 2001, 119, 613-614.	2.1	0
96	Tuning of the photoinduced charge transfer process in donor-acceptor double-cable copolymers. , 2004, 5215, 41.		0
97	Weak Donor, Strong Acceptor Thienopyrazine-Based Polymers for Fine Tuning of LUMO Levels—Suitable Materials for Energy and Storage Solutions. , 0, , .		ο